Biotin Supplementation Improved Reproductive Parameters Following Lead Induced Testicular Toxicity in Male Wistar Rats

Main Article Content

Onyeso G. I.
Reuben, E.
Anupuiya G.O.
Odeghe, O.B.

Abstract

Lead acetate, a prominent heavy metal, is released into the environment by various industries like paint, ceramics, lead-containing pipes, and plastics. Exposure to lead acetate has adverse effects on numerous organs in the body, with a particular impact on the testes due to its distinctive vascular system. The present study investigated the potential protective effects of biotin on lead acetate-induced testicular damage in Wistar rats. Twenty (20) male Wistar rats were divided into 4 groups: control (animal feed daily with water); negative control (lead acetate 60 mg/kg); Positive control group( high-dose Biotin (80mg/kg) and the treatment group Lead acetate (60mg/kg)/high-dose Biotin (80mg/kg). After 28 days of administration, blood samples were collected for hormonal assay, and semen from the epididymis for semen profile. Testicular samples were also collected for histopathological studies. Results showed that lead acetate administration significantly decreased the sperm count, motility, viability, and altered histology of the testis (testicular damage, necrosis of seminiferous tubules, and loss of spermatid) compared to the negative control. However, the treatment group showed significantly improved histology of the testis, and increased sperm count, motility, and viability. From the results of this study, it could be concluded that biotin supplementation could provide a promising ameliorative effect against lead acetate-induced testicular toxicity.

Article Details

How to Cite
Onyeso G. I., Reuben, E., Anupuiya G.O., & Odeghe, O.B. (2024). Biotin Supplementation Improved Reproductive Parameters Following Lead Induced Testicular Toxicity in Male Wistar Rats. International Journal of Pharmaceutical and Bio Medical Science, 4(10), 805–815. https://doi.org/10.47191/ijpbms/v4-i10-05
Section
Articles

References

I. Abd El-Monem, D. D. (2012). The modulating effect of melatonin against the genotoxicity of lead acetate. The Journal of Basic & Applied Zoology, 65(4), 223-231.

https://doi.org/10.1016/j.jobaz.2012.07.001

II. Adamczewska, D., Słowikowska-Hilczer, J., & Walczak-Jędrzejowska, R. (2022). The Association between Vitamin D and the Components of Male Fertility: A Systematic Review. Biomedicines, 11(1), 90.

https://doi.org/10.3390/biomedicines11010090

III. Agency for Toxic Substances and Disease Registry. (2007). Public health statement: Lead (CAS# 7439-92-1). Division of Toxicology and Environmental Medicine. https://www.atsdr.cdc.gov/ToxProfiles/tp13-c1-b.pdf

IV. Akano, O. P., Akinsomisoye, O. S., Alade, D. D., & Akinsanya, S. Y. (2024). Lead acetate provokes poor sperm quality and reduced sperm concentration in male Wistar rats. Annals of Military Health Sciences Research, 22(2), e147186. https://doi.org/10.5812/amh-147186

V. Angulo, C., Maldonado, R., Pulgar, E., Mancilla, H., Córdova, A., Villarroel, F., Castro, M. A., & Concha, I. I. (2011). Vitamin C and oxidative stress in the seminiferous epithelium. Biological Research, 44(2), 169–180. https://doi.org/10.4067/S0716-97602011000200009

VI. Cheah, Y. and Yang, W. (2011) Functions of essential nutrition for high quality spermatogenesis. Advances in Bioscience and Biotechnology, 2, 182-197.

doi: 10.4236/abb.2011.24029.

VII. Chew, Y. C., West, J. T., Kratzer, S. J., Ilvarsonn, A. M., Eissenberg, J. C., Dave, B. J., Klinkebiel, D., Christman, J. K., & Zempleni, J. (2008). Biotinylation of histones represses transposable elements in human and mouse cells and cell lines and in Drosophila melanogaster. The Journal of Nutrition, 138(12), 2316–2322. https://doi.org/10.3945/jn.108.098673

VIII. Dakshinamurti, K., & Chauhan, J. (1989). Biotin. Vitamins and Hormones, 45, 337–384. https://doi.org/10.1016/s0083-6729(08)60398-2

IX. Dapul, H., & Laraque, D. (2014). Lead poisoning in children. Advances in Pediatrics, 61(1), 313–333. https://doi.org/10.1016/j.yapd.2014.04.004

X. El-Alfy, N. Z. I., Mahmoud, M. F., Alqosaibi, A. I., & El-Ashry, S. R. G. (2016). Genotoxic effect of methotrexate on bone marrow chromosomes and DNA of male albino mice (Mus musculus). The Egyptian Journal of Hospital Medicine, 64, 350-363. https://doi.org/10.12816/0029027

XI. Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2

XII. Foster W. G. (2003). Environmental toxicants and human fertility. Minerva Ginecologica, 55(5), 451–457.

XIII. Grande, G., Barrachina, F., Soler-Ventura, A., Jodar, M., Mancini, F., Marana, R., Chiloiro, S., Pontecorvi, A., Oliva, R., & Milardi, D. (2022). The role of testosterone in spermatogenesis: Lessons from proteome profiling of human spermatozoa in testosterone deficiency. Frontiers in Endocrinology, 13, 852661. https://doi.org/10.3389/fendo.2022.852661

XIV. Gravel, R. A., & Narang, M. A. (2005). Molecular genetics of biotin metabolism: old vitamin, new science. The Journal of Nutritional Biochemistry, 16(7), 428–431. https://doi.org/10.1016/j.jnutbio.2005.03.020

XV. Hassan, A. I., & Alam, S. S. (2014). Evaluation of mesenchymal stem cells in treatment of infertility in male rats. Stem Cell Research & Therapy, 5(6), 131. https://doi.org/10.1186/scrt521

XVI. Hirano, K., Nonami, Y., Nakamura, Y., Sato, T., Sato, T., Ishiguro, K. I., Ogawa, T., & Yoshida, S. (2022). Temperature sensitivity of DNA double-strand break repair underpins heat-induced meiotic failure in mouse spermatogenesis. Communications Biology, 5(1), 504. https://doi.org/10.1038/s42003-022-03449-y

XVII. Hogarth, C. A., & Griswold, M. D. (2010). The key role of vitamin A in spermatogenesis. The Journal of Clinical Investigation, 120(4), 956–962. https://doi.org/10.1172/JCI41303

XVIII. Hsu, P.-C., Liu, M.-Y., Hsu, C.-C., Chen, L.-Y., & Guo, Y. L. L. (1998). Effects of vitamin E and/or C on reactive oxygen species-related lead toxicity in the rat sperm. Toxicology, 128(3), 169-179. https://doi.org/10.1016/S0300-483X(98)00068-7

XIX. Jorban, A., Lunenfeld, E., & Huleihel, M. (2024). Effect of Temperature on the Development of Stages of Spermatogenesis and the Functionality of Sertoli Cells In Vitro. International Journal of Molecular Sciences, 25(4), 2160.

https://doi.org/10.3390/ijms25042160

XX. Kothapalli, N., Camporeale, G., Kueh, A., Chew, Y. C., Oommen, A. M., Griffin, J. B., & Zempleni, J. (2005). Biological functions of biotinylated histones. The Journal of Nutritional Biochemistry, 16(7), 446–448.

https://doi.org/10.1016/j.jnutbio.2005.03.025

XXI. Krzastek, S. C., Farhi, J., Gray, M., & Smith, R. P. (2020). Impact of environmental toxin exposure on male fertility potential. Translational Andrology and Urology, 9(6), 2797–2813.

https://doi.org/10.21037/tau-20-685

XXII. Kumar S. (2018). Occupational and Environmental Exposure to Lead and Reproductive Health Impairment: An Overview. Indian Journal of Occupational and Environmental Medicine, 22(3), 128–137. https://doi.org/10.4103/ijoem.IJOEM_126_18

XXIII. Landrigan, P. J., Fuller, R., Hu, H., Caravanos, J., Cropper, M. L., Hanrahan, D., Sandilya, K., Chiles, T. C., Kumar, P., & Suk, W. A. (2018). Pollution and Global Health – An Agenda for Prevention. Environmental Health Perspectives, 126(8), 084501. https://doi.org/10.1289/EHP3141

XXIV. Landrigan, P. J., & Fuller, R. (2014). Environmental pollution: An enormous and invisible burden on health systems in low- and middle-income counties. World hospitals and health services : the Official Journal of the International Hospital Federation, 50(4), 35–40.

XXV. Li, H., Palczewski, K., Baehr, W., & Clagett-Dame, M. (2011). Vitamin A deficiency results in meiotic failure and accumulation of undifferentiated spermatogonia in prepubertal mouse testis. Biology of Reproduction, 84(2), 336–341.

https://doi.org/10.1095/biolreprod.110.086157

XXVI. Li, T., Yao, J., Zhang, Q., Li, Q., Li, J., Wang, X., Li, W., Chen, A., & Yan, J. (2020). Chronic stress impairs male spermatogenesis function and Nectin-3 protein expression in the testis. Physiological Research, 69(2), 297–306. https://doi.org/10.33549/physiolres.934287

XXVII. Medicins Sans Frontieres. (2012). Lead Poisoning Crisis in Zamfara State Northern Nigeria. Available at: https://www.msf.org/sites/default/files/2018-06/MSF-Nigeria-Lead.pdf (230924)

XXVIII. Nandi, A., Sinha, N., Ong, E., Sonmez, H. & Poretsky, L. (2016). Is there a role for vitamin D in human reproduction?. Hormone Molecular Biology and Clinical Investigation, 25(1), 15-28.

https://doi.org/10.1515/hmbci-2015-0051

XXIX. Needleman H. (2004). Lead poisoning. Annual Review of Medicine, 55, 209–222.

https://doi.org/10.1146/annurev.med.55.091902.103653

XXX. Needleman H. L. (1988). The persistent threat of lead: medical and sociological issues. Current Problems in Pediatrics, 18(12), 697–744. https://doi.org/10.1016/0045-9380(88)90004-7

XXXI. Odetayo, A. F., Akhigbe, R. E., Bassey, G. E., Hamed, M. A., & Olayaki, L. A. (2024). Impact of stress on male fertility: Role of gonadotropin inhibitory hormone. Frontiers in Endocrinology, 14, 1329564. https://doi.org/10.3389/fendo.2023.1329564

XXXII. Onyeso, G., Nkpaa, K., & Elochukwu, N. (2015). Ameliorative potential of methanolic extract of Citrullus lanatus (watermelon) seeds on the sperm parameters, testosterone level, and testicular cytoarchitecture of male albino rats induced with lead-acetate. British Journal of Pharmaceutical Research, 6, 35-43.

https://doi.org/10.9734/BJPR/2015/15358

XXXIII. O'Shaughnessy, P. J., Monteiro, A., Verhoeven, G., De Gendt, K., & Abel, M. H. (2010). Effect of FSH on testicular morphology and spermatogenesis in gonadotrophin-deficient hypogonadal mice lacking androgen receptors. Reproduction (Cambridge, England), 139(1), 177–184.

https://doi.org/10.1530/REP-09-0377

XXXIV. Pasten, K., Riverón-Negrete, L., Sicilia-Argumedo, G., Canul, G., Salazar-Anzures, T., Tapia-Rodríguez, M., Hernández-González, E., Roa, A., Cedillo-Peláez, C., & Fernandez-Mejia, C. (2019). Dietary biotin supplementation impairs testis morphology and sperm quality. Journal of Medicinal Food, 23.

https://doi.org/10.1089/jmf.2019.0137

XXXV. Patrick L. (2006). Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Alternative Medicine Review : a Journal of Clinical Therapeutic, 11(1), 2–22.

XXXVI. Paulose, C. S., Thliveris, J. A., Viswanathan, M., & Dakshinamurti, K. (1989). Testicular function in biotin-deficient adult rats. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et Metabolisme, 21(12), 661–665. https://doi.org/10.1055/s-2007-1009314

XXXVII. Raj, K., & Das, A. P. (2023). Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5, 79-85.

XXXVIII. Santillo, A., Giacco, A., Falvo, S., Di Giacomo Russo, F., Senese, R., Di Fiore, M. M., Chieffi Baccari, G., Lanni, A., & de Lange, P. (2020). Mild Exercise Rescues Steroidogenesis and Spermatogenesis in Rats Submitted to Food Withdrawal. Frontiers in Endocrinology, 11, 302. https://doi.org/10.3389/fendo.2020.00302

XXXIX. Sawamura, H., Ikeda, C., Shimada, R., Yoshii, Y., & Watanabe, T. (2015). Dietary intake of high-dose biotin inhibits spermatogenesis in young rats. Congenital Anomalies, 55(1), 31–36. https://doi.org/10.1111/cga.12070

XL. Solvik, B. S., & Strand, T. A. (2024). Biotin: A scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 68, 10256.

https://doi.org/10.29219/fnr.v68.10256

XLI. Song, N., Liu, J., An, S., Nishino, T., Hishikawa, Y., & Koji, T. (2011). Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis. Acta Histochemica et Cytochemica, 44(4), 183–190. https://doi.org/10.1267/ahc.11027

XLII. Tirima, S., Bartrem, C., von Lindern, I., von Braun, M., Lind, D., Anka, S. M., & Abdullahi, A. (2016). Environmental Remediation to Address Childhood Lead Poisoning Epidemic due to Artisanal Gold Mining in Zamfara, Nigeria. Environmental health perspectives, 124(9), 1471–1478. https://doi.org/10.1289/ehp.1510145

XLIII. Tong, Shilu & Von Schirnding, Yasmin & Prapamontol, Tippawan. (2000). [Environmental lead exposure: a public health problem with global dimensions]. Servir (Lisbon, Portugal). 49. 35-43. 10.1590/S0042-96862000000900003.

XLIV. Vigeh, M., Smith, D. R., & Hsu, P. C. (2011). How does lead induce male infertility?. Iranian Journal of Reproductive Medicine, 9(1), 1–8.

XLV. Zou, P., Wang, X., Yang, W., Liu, C., Chen, Q., Yang, H., Zhou, N., Zeng, Y., Chen, H., Zhang, G., Liu, J., Cao, J., Ao, L., & Sun, L. (2019). Mechanisms of Stress-Induced Spermatogenesis Impairment in Male Rats Following Unpredictable Chronic Mild Stress (uCMS). International Journal of Molecular Sciences, 20(18), 4470.

https://doi.org/10.3390/ijms20184470