Reassessing Antimicrobial Strategies: Antibiotics Outperform Nanoparticles in Controlling Bacterial Growth

Main Article Content

Noor R Abady
Ahmed Hamzah Mosa
Abdul- Kareem salman
Zahraa A Muslim
Hamed A. H. Aljabory

Abstract

The purpose of this work was to investigate the possibility of using genetically modified E. coli as a platform for the large-scale production of metal nanoparticles (NPs) with particular morphological characteristics. Our findings defied the popular idea that nanomaterials always work better than traditional antibiotics by showing that antibiotics were more successful than nanoparticles at stopping the development of germs. Azithromycin, in particular, showed notable inhibitory zones in comparison to Ag-silver and silver nanoparticles. These results highlight the necessity of critically reevaluating the effectiveness of nanoparticles in antimicrobial applications and taking into account different approaches when intended results are not obtained. The demonstrated efficiency of conventional antibiotics underscores their ongoing significance.

Article Details

How to Cite
Noor R Abady, Mosa, A. H. ., Abdul- Kareem salman, Zahraa A Muslim, & Hamed A. H. Aljabory. (2024). Reassessing Antimicrobial Strategies: Antibiotics Outperform Nanoparticles in Controlling Bacterial Growth. International Journal of Pharmaceutical and Bio Medical Science, 4(6), 509–511. https://doi.org/10.47191/ijpbms/v4-i6-05
Section
Articles

References

I. Tiquia-Arashiro S., Rodrigues D. Extremophiles: Applications in Nanotechnology. Springer; New York, NY, USA: 2016. pp. 163–193.

II. Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014;9:385–406.

III. Lloyd J.R. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 2003;27:411–425. doi: 10.1016/S0168-6445(03)00044-5. [PubMed] [CrossRef] [Google Scholar]

IV. Singh P., Kim Y.J., Zhang D., Yang D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34:588–599. doi: 10.1016/j.tibtech.2016.02.006.

V. Calvo J., Jung H., Meloni G. Copper metallothioneins. Int. Union Biochem. Mol. Biol. 2017;69:236–245. doi: 10.1002/iub.1618.

VI. Reddy M.S., Prasanna L., Marmeisse R., Fraissinet-Tachet L. Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology. 2014;160:2235–2242. doi: 10.1099/mic.0.080218-0.

VII. Park T.J., Lee K.G., Lee S.Y. Advances in microbial biosynthesis of metal nanoparticles. Appl. Microbiol. Biotechnol. 2016;100:521–534. doi: 10.1007/s00253-015-6904-7.

VIII. Rubino F.M. Toxicity of glutathione-binding metals: A review of targets and mechanisms. Toxics. 2015;3:20–62. doi: 10.3390/toxics3010020.

IX. Kang S.H., Bozhilov K.N., Myung N.V., Mulchandani A., Chen W. Microbial synthesis of Cds nanocrystals in genetically engineered E. coli. Angew. Chem. Int. Ed. 2008;47:5186–5189. doi: 10.1002/anie.200705806.

X. Park T.J., Lee S.Y., Heo N.S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem. Int. Ed. Engl. 2010;49:7019–7024. doi: 10.1002/anie.201001524.

XI. Choia Y., Park T.J., Lee D.C., Lee S.Y. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc. Natl. Acad. Sci. USA. 2018;115:5944–5949. doi: 10.1073/pnas.1804543115.

XII. Ghashghaei S., Emtiazi G. The methods of nanoparticle synthesis using bacteria as biological nanofactories, their mechanisms and major applications. Current Bionanotechnol. 2015;1:3–17. doi: 10.2174/2213529401999140310104655.

XIII. Ovais M., Khalil A.T., Ayaz M., Ahmad I., Nethi S.K., Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach. Int. J. Mol. Sci. 2018;19:4100. doi: 10.3390/ijms19124100.

XIV. Kushwaha A., Singh V.K., Bhartariya J., Singh P., Yasmeen K. Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: Characterization of the particles and study of antibacterial activity. Eur. J. Exp. Biol. 2015;5:65–70.

XV. Vijayanandan A.S., Balakrishnan R.M. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J. Environ. Manag. 2018;218:442–450.

doi: 10.1016/j.jenvman.2018.04.032.

XVI. Patel V., Berthold D., Puranik P., Gantar M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. 2015;5:112–119. doi: 10.1016/j.btre.2014.12.001.