Association of Iron Profile with Type 2 Diabetes Mellitus:Review

Main Article Content

Khaldoon Jasim Mohammed
Salam Kitab Rubat
Ahmed Falah Imran

Abstract

This minireview assesses the correlation between iron profile levels and type 2 diabetes mellitus. Iron, ferritin, transferrin saturation, and total iron-binding capacity (TIBC) are examples of iron profiles. Every study included in this review shows that type 2 diabetics' blood serum has less iron overall and less iron-binding capacity. Conversely, the same studies' findings showed that individuals with type 2 diabetes had higher levels of ferritin in their blood serum. In terms of transferrin (iron) saturation, a number of studies show that it is rising, while a smaller number shows that it is falling in the blood serum of those who have type 2 diabetes. These investigations led to the conclusion that there is substantial evidence linking the iron profile to type 2 diabetic mellitus (T2DM). Reduced transferrin levels are connected to a lower risk of Type 2 Diabetes Mellitus, but higher serum iron, ferritin, and transferrin saturation are associated with an increased risk. There is also genetic evidence that links elevated systemic iron status to a higher risk of type 2 diabetes.

Article Details

How to Cite
Khaldoon Jasim Mohammed, Salam Kitab Rubat, & Ahmed Falah Imran. (2024). Association of Iron Profile with Type 2 Diabetes Mellitus:Review. International Journal of Pharmaceutical and Bio Medical Science, 4(3), 199–205. https://doi.org/10.47191/ijpbms/v4-i3-13
Section
Articles

References

I. Urrechaga, E., Borque, L., & Escanero, J. F. (2013). Biomarkers of hypochromia: the contemporary assessment of iron status and erythropoiesis. BioMed research international, 2013. ‏

II. Borel, M. J., Smith, S. M., Derr, J., & Beard, J. L. (1991). Day-to-day variation in iron-status indices in healthy men and women. The American journal of clinical nutrition, 54(4), 729-735.

III. Estevão, I. F., Peitl, J., & Bonini-Domingos, C. R. (2011). Serum ferritin and transferrin saturation levels in β0 and β+ thalassemia patients. Genetics and Molecular Research, 632-639. ‏

IV. Ibáñez-Alcalde, M. M., Vázquez-López, M. Á., Ruíz-Sánchez, A. M., Lendínez-Molinos, F. J., Galera-Martínez, R., Bonillo-Perales, A., & Parrón-Carreño, T. (2018). Reference values of reticulocyte hemoglobin content in healthy adolescents. Journal of Pediatric Hematology/Oncology, 40(4), 298-303. ‏

V. Aregbesola, A., Voutilainen, S., Virtanen, J. K., Mursu, J., & Tuomainen, T. P. (2013). Body iron stores and the risk of type 2 diabetes in middle-aged men. European journal of endocrinology, 169(2), 247-253. ‏

VI. Casjens, S., Henry, J., Rihs, H. P., Lehnert, M., Raulf-Heimsoth, M., Welge, P., ... & Pesch, B. (2014). Influence of welding fume on systemic iron status. Annals of occupational hygiene, 58(9), 1143-1154. ‏

VII. Altamura, S., Kopf, S., Schmidt, J., Müdder, K., da Silva, A. R., Nawroth, P., & Muckenthaler, M. U. (2017). Uncoupled iron homeostasis in type 2 diabetes mellitus. Journal of Molecular Medicine, 95, 1387-1398. ‏

VIII. Huth, C., Beuerle, S., Zierer, A., Heier, M., Herder, C., Kaiser, T., ... & Thorand, B. (2015). Biomarkers of iron metabolism are independently associated with impaired glucose metabolism and type 2 diabetes: the KORA F4 study. European journal of endocrinology, 173(5), 643-653. ‏

IX. Hallberg, L. (1994). 3 Prevention of iron deficiency. Baillière's clinical haematology, 7(4), 805-814. ‏

X. Camaschella, C. (2019). Iron deficiency. Blood, The Journal of the American Society of Hematology, 133(1), 30-39. ‏

XI. Scrimshaw, N. S. (1991). Iron deficiency. Scientific American, 265(4), 46-53. ‏

XII. Pasricha, S. R., Tye-Din, J., Muckenthaler, M. U., & Swinkels, D. W. (2021). Iron deficiency. The Lancet, 397(10270), 233-248. ‏

XIII. Nasli-Esfahani, E., Larijani, B., Amini, P., GHASEMABADI, R. G., & Razmandeh, R. (2017). Effect of treatment of iron deficiency anemia onhemoglobin A1c in type 2 diabetic patients. Turkish journal of medical sciences, 47(5), 1441-1446. ‏

XIV. Jung, D. H., Hong, K. W., Park, B., & Lee, Y. J. (2021). Dietary iron to total energy intake ratio and type 2 diabetes incidence in a longitudinal 12-year analysis of the Korean Genome and Epidemiology Cohort Study. European Journal of Nutrition, 60(8), 4453-4461. ‏

XV. Bao, W., Chavarro, J. E., Tobias, D. K., Bowers, K., Li, S., Hu, F. B., & Zhang, C. (2016). Long-term risk of type 2 diabetes in relation to habitual iron intake in women with a history of gestational diabetes: a prospective cohort study, 2. The American journal of clinical nutrition, 103(2), 375-381. ‏

XVI. Zhang, R., Huang, X., Li, Y., Yu, Z., Wu, Y., Zha, B., ... & Liu, J. (2021). Serum ferritin as a risk factor for type 2 diabetes mellitus, regulated by liver transferrin receptor 2. Endocrine Connections, 10(12), 1513-1521. ‏

XVII. Nasli-Esfahani, E., Larijani, B., Amini, P., GHASEMABADI, R. G., & Razmandeh, R. (2017). Effect of treatment of iron deficiency anemia onhemoglobin A1c in type 2 diabetic patients. Turkish journal of medical sciences, 47(5), 1441-1446. ‏

XVIII. An, S. J., Kim, M. J., Lee, C., Jung, D. H., Jung, M. H., & Kim, C. (2022). Dietary Iron to Total Energy Intake Ratio and Type 2 Diabetes Incidence in a Longitudinal 12-Year. Obesity, 30, 178-178. ‏

XIX. Orban, E., Schwab, S., Thorand, B., & Huth, C. (2014). Association of iron indices and type 2 diabetes: a meta‐analysis of observational studies. Diabetes/metabolism research and reviews, 30(5), 372-394. ‏

XX. Wang, J. W., Jin, C. H., Ke, J. F., Ma, Y. L., Wang, Y. J., Lu, J. X., ... & Li, L. X. (2022). Serum iron is closely associated with metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Frontiers in Endocrinology, 13, 942412. ‏

XXI. Shetty, J. K., Prakash, M., & Ibrahim, M. S. (2008). Relationship between free iron and glycated hemoglobin in uncontrolled type 2 diabetes patients associated with complications. Indian Journal of Clinical Biochemistry, 23, 67-70. ‏

XXII. Musina, N. N., Saprina, T. V., Prokhorenko, T. S., & Zima, A. P. (2020). Searching for additional markers of impaired iron metabolism in diabetes mellitus. Problems of Endocrinology, 66(2), 61-70. ‏

XXIII. Fernández-Real, J. M., McClain, D., & Manco, M. (2015). Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes care, 38(11), 2169-2176.‏

XXIV. Dulal, H. P., Lamsal, M., Sharma, S. K., Baral, N., & Majhi, S. S. (2014). Status of iron, oxidant and antioxidants in chronic type 2 diabetes mellitus patients. Nepal Med Coll J, 16(1), 54-57.‏

XXV. Liu, J., Li, Q., Yang, Y., & Ma, L. (2020). Iron metabolism and type 2 diabetes mellitus: A meta‐analysis and systematic review. Journal of diabetes investigation, 11(4), 946-955.‏

XXVI. Fernández-Real, J. M., López-Bermejo, A., & Ricart, W. (2002). Cross-talk between iron metabolism and diabetes. Diabetes, 51(8), 2348-2354.‏

XXVII. Huang, J., Karnchanasorn, R., Ou, H. Y., Feng, W., Chuang, L. M., Chiu, K. C., & Samoa, R. (2015). Association of insulin resistance with serum ferritin and aminotransferases-iron hypothesis. World Journal of Experimental Medicine, 5(4), 232.‏

XXVIII. Yin, X., Xi, Y., Zhang, S., Xia, Y., Gao, L., Liu, J., ... & Yang, Y. (2016). atrioventricular node slow‐pathway ablation reduces atrial fibrillation inducibility: A neuronal mechanism. Journal of the American Heart Association, 5(6), e003083.‏

XXIX. Pradeepa, R., Shreya, L., Anjana, R. M., Jebarani, S., Raj, N. K., Kumar, M. S., ... & Mohan, V. (2022). Frequency of iron deficiency anemia in type 2 diabetes-Insights from tertiary diabetes care centres across India. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 16(11), 102632.‏

XXX. Sam, A. H., Busbridge, M., Amin, A., Webber, L., White, D., Franks, S., ... & Murphy, K. G. (2013). Hepcidin levels in diabetes mellitus and polycystic ovary syndrome. Diabetic medicine, 30(12), 1495-1499.‏

XXXI. Fernández-Real, J. M., Penarroja, G., Castro, A., García-Bragado, F., Hernández-Aguado, I., & Ricart, W. (2002). Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and β-cell function. Diabetes, 51(4), 1000-1004.‏

XXXII. Suárez-Ortegón, M. F., Arbeláez, A., Mosquera, M., Méndez, F., & Aguilar-de Plata, C. (2012). Body iron stores as predictors of insulin resistance in apparently healthy urban Colombian men. Biological trace element research, 145, 283-285.‏

XXXIII. Wei, J., Luo, X., Zhou, S., He, X., Zheng, J., Sun, X., & Cui, W. (2019). Associations between iron status and insulin resistance in Chinese children and adolescents: findings from the China Health and Nutrition Survey. Asia Pacific Journal of Clinical Nutrition, 28(4), 819-825.‏

XXXIV. Canturk, Z., Çetinarslan, B., Tarkun, İ., & Zafer Canturk, N. (2003). Serum ferritin levels in poorly‐and well‐controlled diabetes mellitus. Endocrine research, 29(3), 299-306.‏

XXXV. Bayat, A. A., Yeganeh, O., Ghods, R., Zarnani, A. H., Ardekani, R. B., Mahmoudi, A. R., ... & Jeddi-Tehrani, M. (2013). Production and characterization of a murine monoclonal antibody against human ferritin. Avicenna Journal of Medical Biotechnology, 5(4), 212.‏

XXXVI. Dominguez-Vera, J. M., Fernandez, B., & Galvez, N. (2010). Native and synthetic ferritins for nanobiomedical applications: recent advances and new perspectives. Future Medicinal Chemistry, 2(4), 609-618.‏

XXXVII. Fan, K., Gao, L., & Yan, X. (2013). Human ferritin for tumor detection and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5(4), 287-298.‏

XXXVIII. Li, C., Li, Z., Li, Y., Zhou, J., Zhang, C., Su, X., & Li, T. (2012). A ferritin from Dendrorhynchus zhejiangensis with heavy metals detoxification activity. PloS one, 7(12), e51428.‏

XXXIX. Hsieh, S. L., Chiu, Y. C., & Kuo, C. M. (2006). Molecular cloning and tissue distribution of ferritin in Pacific white shrimp (Litopenaeus vannamei). Fish & shellfish immunology, 21(3), 279-283.‏

XL. Bernacchioni, C., Ciambellotti, S., Theil, E. C., & Turano, P. (2015). Is His54 a gating residue for the ferritin ferroxidase site?. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1854(9), 1118-1122.‏

XLI. Torti, S. V., Kwak, E. L., Miller, S. C., Miller, L. L., Ringold, G. M., Myambo, K. B., ... & Torti, F. M. (1988). The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible gene. Journal of Biological Chemistry, 263(25), 12638-12644.‏

XLII. Xue, L., Deng, D., & Sun, J. (2019). Magnetoferritin: Process, prospects, and their biomedical applications. International Journal of Molecular Sciences, 20(10), 2426.‏

XLIII. Lee, J. L., Park, C. S., & Kim, H. Y. (2007). Functional assembly of recombinant human ferritin subunits in Pichia pastoris. Journal of microbiology and biotechnology, 17(10), 1695-1699.‏

XLIV. Recalcati, S., Invernizzi, P., Arosio, P., & Cairo, G. (2008). New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. Journal of autoimmunity, 30(1-2), 84-89.‏

XLV. Tummalacharla, S. C., Pavuluri, P., Maram, S. R., Vadakedath, S., Kondu, D., Karpay, S., & Kandi, V. (2022). Serum activities of ferritin among controlled and uncontrolled type 2 diabetes mellitus patients. Cureus, 14(5).‏

XLVI. Wang, Y. L., Koh, W. P., Yuan, J. M., & Pan, A. (2017). Plasma ferritin, C-reactive protein, and risk of incident type 2 diabetes in Singapore Chinese men and women. Diabetes research and clinical practice, 128, 109-118.‏

XLVII. Kundu, D., Roy, A., Mandal, T., Bandyopadhyay, U., Ghosh, E., & Ray, D. (2013). Relation of iron stores to oxidative stress in type 2 diabetes. Nigerian journal of clinical practice, 16(1), 100-103.‏

XLVIII. Shang, X., Zhang, R., Wang, X., Yao, J., Zhao, X., & Li, H. (2022). The relationship of hyperferritinemia to metabolism and chronic complications in type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 175-182.‏

XLIX. Kim, C. H., Kim, H. K., Bae, S. J., Park, J. Y., & Lee, K. U. (2011). Association of elevated serum ferritin concentration with insulin resistance and impaired glucose metabolism in Korean men and women. Metabolism, 60(3), 414-420.‏

L. Jung, C. H., Lee, M. J., Hwang, J. Y., Jang, J. E., Leem, J., Park, J. Y., ... & Lee, W. J. (2013). Elevated serum ferritin level is associated with the incident type 2 diabetes in healthy Korean men: a 4 year longitudinal study. PLoS One, 8(9), e75250.‏

LI. Bezkorovainy, A. (1989). Biochemistry of nonheme iron in man. I. Iron proteins and cellular iron metabolism. Clinical physiology and biochemistry, 7(1), 1-17.‏

LII. Steinlein, L. M., Graf, T. N., & Ikeda, R. A. (1995). Production and purification of N-terminal half-transferrin in Pichia pastoris. Protein expression and purification, 6(5), 619-624.‏

LIII. Wang, Y., Chen, Y. S., Zaro, J. L., & Shen, W. C. (2011). Receptor-mediated activation of a proinsulin-transferrin fusion protein in hepatoma cells. Journal of controlled release, 155(3), 386-392.‏

LIV. Dai Kim, J., Lim, D. M., Park, K. Y., Park, S. E., Rhee, E. J., Park, C. Y., ... & Oh, K. W. (2020). Serum transferrin predicts new-onset type 2 diabetes in koreans: A 4-year retrospective longitudinal study. Endocrinology and Metabolism, 35(3), 610-617.‏

LV. Jiang, R., Manson, J. E., Meigs, J. B., Ma, J., Rifai, N., & Hu, F. B. (2004). Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. Jama, 291(6), 711-717.‏

LVI. Misra, G., Bhatter, S. K., Kumar, A., Gupta, V., & Khan, M. Y. (2016). Iron profile and glycaemic control in patients with type 2 diabetes mellitus. Medical Sciences, 4(4), 22.‏

LVII. Ellervik, C., Mandrup-Poulsen, T., Andersen, H. U., Tybjærg-Hansen, A., Frandsen, M., Birgens, H., & Nordestgaard, B. G. (2011). Elevated transferrin saturation and risk of diabetes: three population-based studies. Diabetes care, 34(10), 2256-2258.‏

LVIII. Lee, D. H., Liu, D. Y., Jacobs Jr, D. R., Shin, H. R., Song, K., Lee, I. K., ... & Hider, R. C. (2006). Common presence of non–transferrin-bound iron among patients with type 2 diabetes. Diabetes care, 29(5), 1090-1095.‏

LIX. Fernández‐Real, J. M., Mercader, J. M., Ortega, F. J., Moreno‐Navarrete, J. M., López‐Romero, P., & Ricart, W. (2010). Transferrin receptor‐1 gene polymorphisms are associated with type 2 diabetes. European journal of clinical investigation, 40(7), 600-607.‏

LX. Thomas, M. C., MacIsaac, R. J., Tsalamandris, C., & Jerums, G. (2004). Elevated iron indices in patients with diabetes. Diabetic medicine, 21(7), 798-802.‏

LXI. Yeap, B. B., Divitini, M. L., Gunton, J. E., Olynyk, J. K., Beilby, J. P., McQuillan, B., ... & Knuiman, M. W. (2015). Higher ferritin levels, but not serum iron or transferrin saturation, are associated with Type 2 diabetes mellitus in adult men and women free of genetic haemochromatosis. Clinical Endocrinology, 82(4), 525-532.‏

LXII. Van Campenhout, A., Van Campenhout, C., Olyslager, Y. S., Van Damme, O., Lagrou, A. R., & Manuel-y-Keenoy, B. (2006). A novel method to quantify in vivo transferrin glycation: applications in diabetes mellitus. Clinica chimica acta, 370(1-2), 115-123.‏

LXIII. Aljwaid, H., White, D. L., Collard, K. J., Moody, A. J., & Pinkney, J. H. (2015). Non-transferrin-bound iron is associated with biomarkers of oxidative stress, inflammation and endothelial dysfunction in type 2 diabetes. Journal of Diabetes and its Complications, 29(7), 943-949.‏

LXIV. Kasvosve, I., & Delanghe, J. (2002). Total iron binding capacity and transferrin concentration in the assessment of iron status.‏

LXV. Kang, P., Liu, T., Tian, C., Zhou, Y., & Jia, C. (2012). Association of total iron binding capacity with coronary artery disease. Clinica Chimica Acta, 413(19-20), 1424-1429.‏

LXVI. Asif, N., Ijaz, A., Rafi, T., Haroon, Z. H., Bashir, S., & Ayyub, M. (2016). Diagnostic accuracy of serum iron and total iron binding capacity (TIBC) in iron deficiency state. J Coll Physicians Surg Pak, 26(12), 958-61.‏

LXVII. Yamanishi, H., Kimura, S., Iyama, S., Yamaguchi, Y., & Yanagihara, T. (1997). Fully automated measurement of total iron-binding capacity in serum. Clinical chemistry, 43(12), 2413-2417.‏

LXVIII. Zimiao, C., Dongdong, L., Shuoping, C., Peng, Z., Fan, Z., Rujun, C., & Xiaohua, G. (2022). Correlations Between Iron Status and Body Composition in Patients With Type 2 Diabetes Mellitus. Frontiers in Nutrition, 9, 911860.‏

LXIX. Zheng, X., Jiang, T., Wu, H., Zhu, D., Wang, L., Qi, R., ... & Ling, C. (2011). Hepatic iron stores are increased as assessed by magnetic resonance imaging in a Chinese population with altered glucose homeostasis. The American journal of clinical nutrition, 94(4), 1012-1019.‏

LXX. Altes, A., Remacha, A. F., Sarda, P., Baiget, M., Canals, C., & Sierra, J. (2006). The relationship between transferrin saturation and erythropoiesis during stem cell transplantation. Haematologica, 91(7), 992-993.‏

LXXI. McLaren, C. E., McLachlan, G. J., Halliday, J. W., Webb, S. I., Leggett, B. A., Jazwinska, E. C., ... & Powell, L. W. (1998). Distribution of transferrin saturation in an Australian population: relevance to the early diagnosis of hemochromatosis. Gastroenterology, 114(3), 543-549.‏

LXXII. Mainous, A. G., Wells, B., Carek, P. J., Gill, J. M., & Geesey, M. E. (2004). The mortality risk of elevated serum transferrin saturation and consumption of dietary iron. The Annals of Family Medicine, 2(2), 139-144.‏

LXXIII. Podgórski, T., Kryściak, J., Konarski, J., Domaszewska, K., Durkalec-Michalski, K., Strzelczyk, R., & Pawlak, M. (2015). Iron metabolism in field hockey players during an annual training cycle. Journal of Human Kinetics, 47(1), 107-114.‏

LXXIV. Van Heghe, L., Delanghe, J., Van Vlierberghe, H., & Vanhaecke, F. (2013). The relationship between the iron isotopic composition of human whole blood and iron status parameters. Metallomics, 5(11), 1503-1509.‏