HIV/Aids Treatment by Stem Cell Transplantation: A Review

Main Article Content

Kalpesh Pundlik Mahajan

Abstract

Human immunodeficiency virus (HIV) required the presence of CD4 receptor and chemokine receptor (CCR5∆32) to inter into the CD4 host cell. Antiretroviral drugs only blocks the entry of HIV virus into the host cell. The cure of an HIV/AIDS patient the stem cell transplantation from an allogeneic and autologous donor who are homozygous for CCR5∆32 receptor mutation has increase research strategies to cure HIV/AIDS to induce long term remission without antiretroviral drugs. Natural CCR5∆32 deficient donors and autologous stem cell transplantation of genetically modified hematopoietic stem cells are currently under research. This review highlight the previous studies of stem cell transplantation in the treatment of HIV/AIDS.

Article Details

How to Cite
Kalpesh Pundlik Mahajan. (2021). HIV/Aids Treatment by Stem Cell Transplantation: A Review . International Journal of Pharmaceutical and Bio Medical Science, 1(2). Retrieved from https://ijhmr.ijhmr.ijhmr.com/index.php/ijpbms/article/view/15
Section
Articles

References

S. Zou et al., “Blood Forum Hematopoietic cell transplantation and HIV cure : where we are and what next ?,” vol. 122, no. 18, pp. 3111–3116, 2019, doi: 10.1182/blood-2013-07-518316.The.

G. Barbaro, “Heart and HAART: Two sides of the coin for HIV-associated cardiology issues,” World J. Cardiol., vol. 2, no. 3, p. 53, 2010, doi: 10.4330/wjc.v2.i3.53.

D. R. Kuritzkes, “Hematopoietic stem cell transplantation for HIV cure,” vol. 126, no. 2, pp. 432–437, 2016, doi: 10.1172/JCI80563.Introduction.

C. Z. Nucleases et al., “Engineering HIV-Resistant Human CD4 + T Cells with,” vol. 7, no. 4, 2011, doi: 10.1371/journal.ppat.1002020.

A. Antinori et al., “Better response to chemotherapy and prolonged survival in AIDS-related lymphomas responding to highly active antiretroviral therapy,” no. April, 2001.

C. H. G. Isselbrecht, J. E. A. N. V. E. S. C. Ahn, and J. E. A. N. U. C. H. Arousseau, “AUTOLOGOUS BONE MARROW TRANSPLANTATION AS COMPARED WITH SALVAGE CHEMOTHERAPY IN RELAPSES OF CHEMOTHERAPY-SENSITIVE NON-HODGKIN ’ S LYMPHOMA,” pp. 1540–1545, 1995.

P. Balsalobre, P. Miralles, D. Serrano, R. Carrio, M. Ribera, and E. Conde, “HIV-associated lymphoma successfully treated with peripheral blood stem cell transplantation,” vol. 33, pp. 487–494, 2005.

M. R. Alison, R. Poulsom, S. Forbes, and N. A. Wright, “An introduction to stem cells,” vol. 2001, no. August 2001, pp. 419–423, 2002.

J. A. Pawitan, “Prospect of Stem Cell Conditioned Medium in,” vol. 2014, pp. 7–9, 2014.

N. S. Majhail et al., “Biology of Blood and Marrow Transplantation Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation : Guidelines from the American Society for Blood and Marrow Transplantation,” Biol. Blood Marrow Transplant., vol. 21, no. 11, pp. 1863–1869, 2015, doi: 10.1016/j.bbmt.2015.07.032.

K. Kalra and P. C. Tomar, “Stem Cell : Basics , Classification and Applications.”

I. Yakoub-Agha et al., “Allogeneic marrow stem-cell transplantation from human leukocyte antigen-identical siblings versus human leukocyte antigen-allelic-matched unrelated donors (10/10) in patients with standard-risk hematologic malignancy: A prospective study from the French ,” J. Clin. Oncol., vol. 24, no. 36, pp. 5695–5702, 2006, doi: 10.1200/JCO.2006.08.0952.

S. S. Huang et al., “Reversal of Human Immunodeficiency Virus Type 1-Associated Hematosuppression by Effective Antiretroviral Therapy Published by : Oxford University Press Stable URL : http://www.jstor.org/stable/4461074 Reversal of Human Immunodeficiency Virus Type 1-Associ,” vol. 30, no. 3, pp. 504–510, 2016.

A. Isgrò et al., “Recovery of Hematopoietic Activity in Bone Marrow from Human Immunodeficiency Virus Type 1-Infected Patients during Highly Active Antiretroviral Therapy,” vol. 16, no. 15, pp. 1471–1479, 2000.

A. Manuscript, “NIH Public Access,” vol. 4, no. 1, pp. 11–15, 2013,

doi: 10.1097/COH.0b013e32831a6fc9.Stem.

J. T. A. Daly, K. J. L. Labelle, L. S. D. Stewart, and J. S. S. Beattie, “Patient eligibility for hematopoietic stem cell transplantation : a review of patient-associated variables,” Bone Marrow Transplant., pp. 368–382, 2019, doi: 10.1038/s41409-018-0265-7.

P. J. Maddon, A. G. Dalgleish, J. S. McDougal, P. R. Clapham, R. A. Weiss, and R. Axel, “The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain,” Cell, vol. 47, no. 3, pp. 333–348, 1986, doi: 10.1016/0092-8674(86)90590-8.

G. Hütter and J. A. Zaia, “Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: The experiences of more than 25 years,” Clin. Exp. Immunol., vol. 163, no. 3, pp. 284–295, 2011, doi: 10.1111/j.1365-2249.2010.04312.x.

J. A. Church, “Raltegravir with optimized background therapy for resistant HIV-1 infection,” Pediatrics, vol. 124, no. SUPPL. 2, 2009, doi: 10.1542/peds.2009-1870FFFF.

G. Hütter and S. Ganepola, “Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells,” ScientificWorldJournal., vol. 11, pp. 1068–1076, 2011, doi: 10.1100/tsw.2011.102.

K. Allers and T. Schneider, “ScienceDirect CCR5 D 32 mutation and HIV infection : basis for curative HIV therapy,” Curr. Opin. Virol., vol. 14, pp. 24–29, 2015, doi: 10.1016/j.coviro.2015.06.007.

B. Owens, “Zinc-finger nucleases make the cut in HIV.,” Nat. Rev. Drug Discov., vol. 13, no. 5, pp. 321–322, 2014, doi: 10.1038/nrd4316.

F. D. Urnov et al., “Highly efficient endogenous human gene correction using designed zinc-finger nucleases,” vol. 435, no. June, 2005, doi: 10.1038/nature03556.

M. Isalan, “Zinc-finger nucleases : how to play two good hands,” Nat. Methods, vol. 9, no. 1, pp. 32–34, 2012, doi: 10.1038/nmeth.1805.

E. E. Perez et al., “Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases,” vol. 26, no. 7, 2008, doi: 10.1038/nbt1410.

L. Li et al., “Genomic Editing of the HIV-1 Coreceptor CCR5 in Adult Hematopoietic Stem and Progenitor Cells Using Zinc Finger Nucleases,” vol. 21, no. 6, pp. 1259–1269, 2013,

doi: 10.1038/mt.2013.65.

N. Holt et al., “Human hematopoietic stem/ progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo,” Nat. Biotechnol., vol. 28, no. 8, pp. 839–847, 2010, doi: 10.1038/nbt.1663.

C. Mussolino, R. Morbitzer, F. Lu, N. Dannemann, T. Lahaye, and T. Cathomen, “A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity,” vol. 39, no. 21, pp. 9283–9293, 2011, doi: 10.1093/nar/gkr597.

Y. Kuang, “Mutations in Chemokine,” no. January 2018, 2019, doi: 10.1016/bs.pmbts.2018.10.001.

G. Hütter, “Stem cell transplantation in strategies for curing HIV / AIDS,” AIDS Res. Ther., pp. 1–8, 2016, doi: 10.1186/s12981-016-0114-y.

L. F. Verdonck, G. C. De Gast, J. M. A. Lange, H. J. Schuurman, A. W. Dekker, and B. J. E. G. Bast, “Syngeneic leukocytes together with suramin failed to improve immunodeficiency in a case of transfusion-associated AIDS after syngeneic bone marrow transplantation,” Blood, vol. 71, no. 3, pp. 666–671, 1988,

doi: 10.1182/blood.v71.3.666.bloodjournal713666.

H. K. Holland et al., “Allogeneic bone marrow transplantation, zidovudine, and human immunodeficiency virus type 1 (HIV-1) infection: studies in a patient with non-Hodgkin lymphoma,” Ann. Intern. Med., vol. 111, no. 12, pp. 973–981, 1989, doi: 10.7326/0003-4819-111-12-973.

H. C. Lane et al., “Syngeneic bone marrow transplantation and adoptive transfer of peripheral blood lymphocytes combined with zidovudine in human immunodeficiency virus (HIV) infection,” Ann. Intern. Med., vol. 113, no. 7, pp. 512–519, 1990, doi: 10.7326/0003-4819-113-7-512.

E. M. Kang et al., “Nonmyeloablative conditioning followed by transplantation of genetically modified HLA-matched peripheral blood progenitor cells for hematologic malignancies in patients with acquired immunodeficiency syndrome,” Blood, vol. 99, no. 2, pp. 698–701, 2002, doi: 10.1182/blood.V99.2.698.

A. Tomonari et al., “Unrelated cord blood transplantation for a human immunodeficiency virus-1-seropositive patient with acute lymphoblastic leukemia [1],” Bone Marrow Transplant., vol. 36, no. 3, pp. 261–262, 2005, doi: 10.1038/sj.bmt.1705028.

K. Allers et al., “Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation,” Blood, vol. 117, no. 10, pp. 2791–2799, 2011, doi: 10.1182/blood-2010-09-309591.

J. H. Beumer, R. Venkataramanan, and M. A. Rudek, “Pharmacotherapy in cancer patients with HIV/AIDS,” Clin. Pharmacol. Ther., vol. 95, no. 4, pp. 370–372, 2014, doi: 10.1038/clpt.2014.10.

E. Schneider et al., “Autologous stem cell infusion for acute myeloblastic leukemia in an HIV-1 carrier,” Bone Marrow Transplant., vol. 20, no. 7, pp. 611–612, 1997, doi: 10.1038/sj.bmt.1700930.

R. S. Mehta and K. Rezvani, “Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection,” Virulence, vol. 7, no. 8, pp. 901–916, 2016, doi: 10.1080/21505594.2016.1208866.

T. Benicchi et al., “T-cell immune reconstitution after hematopoietic stem cell transplantation for HIV-associated lymphoma,” Transplantation, vol. 80, no. 5, pp. 673–682, 2005,

doi: 10.1097/01.tp.0000168490.29862.b8.

O. Pernet, S. S. Yadav, and D. S. An, “Stem cell-based therapies for HIV/AIDS,” Adv. Drug Deliv. Rev., vol. 103, pp. 187–201, 2016, doi: 10.1016/j.addr.2016.04.027.

G. Hütter, C. Blüthgen, M. Neumann, M. Reinwald, D. Nowak, and H. Klüter, “Coregulation of HIV-1 dependency factors in individuals heterozygous to the CCR5-delta32 deletion,” AIDS Res. Ther., vol. 10, no. 1, pp. 1–8, 2013, doi: 10.1186/1742-6405-10-26.

T. R. Brown and K. Hiv, “Timothy Ray Brown ’ s Continuing,” vol. 34, no. 1, pp. 9–11, 2018, doi: 10.1089/aid.2017.0318.

T. R. Brown, “I Am the Berlin Patient : A Personal Reflection,” vol. 31, no. 1, pp. 1–2, 2015, doi: 10.1089/aid.2014.0224.