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ABSTRACT 

 

 
ARTICLE DETAILS 

 
Protein tyrosine phosphatase 1 B (PTP1B) is involved in the development of obesity, type 2 

diabetes, and different cancer cells, such as breast cancer and lung cancer. This makes the 

enzyme a promising target for the treatment of these diseases. The purpose of this review is to 

present the studies on the role of PTP1B in the development of obesity, diabetes, and cancer and 

selected inhibitors as a possible treatment. Studies have shown that PTP1B, due to its implication 

in obesity, type 2 diabetes, and oncogenic transformation, denotes a promising drug target. The 

selected compounds that are effective PTP1B inhibitors can be considered promising anti-

obesity, anti-diabetic, and anticancer treatment. 
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1. INTRODUCTION  

Obesity and diabetes mellitus (DM) are among the greatest 

public health challenges of the 21st century as their 

incidence and prevalence are extremely increasing in the 

world[1, 2]. People with obesity are exposed directly to type 

II diabetes and various physical disabilities, psychological 

problems as well a high risk of developing several non-

communicable diseases (NCDs), including cardiovascular 

disease and certain types of cancer[4, 5].The direct causes of 

obesity are difficult to discern due to the plethora of 

physiological changes associated with obesity but metabolic 

and genetic causes are the most important[6]. Metabolic 

causes are mainly due to an imbalance in the lipid 

metabolism which results in disruption of energy 

homeostasis[7, 8].Obesity is associated with an increased 

risk of developing multiple forms of cancer. It is estimated 

to cause up to 20 % of all cancers[9]. 

Today, diabetes is considered to be one of the most 

serious health problems in the world, affecting millions 

of adults[10]. Type 2 diabetes causes hyperglycemia due 

to impaired insulin secretion and/or resistance, which 

leads to severe complicationsincluding cardiovascular 

diseases, nephropathy, retinopathy, and peripheral 

neuropathy.Insulin, insulin secretagogues (sulfonylureas, 

glinides, dipeptidyl-peptidase IV inhibitors, and 

glucagon-like peptide-1 analogs), and insulin 

sensitizers(peroxisome proliferator-activated receptor 

(PPAR)g agonists) as well as insulin-independent drugs 

such as sodium-glucoseco-transporter2inhibitors can be 

used to treat hyperglycemia [11, 12]. Treatment of 

diabetic patients having insulin resistance and 

hyperinsulinemia with insulinsensitizersisbeneficial 

because these drugs are known to lower plasma glucose 

levelswithout increasing insulin levels, hyperinsulinemia 

is associated with a risk of developing obesity and 

cardiovascular diseases[13, 14]. In diabetic 

patients,pioglitazone,aPPARgagonist, has been used as an 

effective insulin sensitizer and it prevents macro-

vasculopathy, but it may cause variousadverse effects 

including edema, obesity, and bone loss[15]. It is 

considered that PPARg agonists increase the fat mass by 

favoring the differentiation of adipocytes[16]. This is an 

indication that there is a need for insulin sensitizers that do 

not trigger PPARg. 

Various cellular signaling pathways are involved in obesity 

and its complications[17, 18].Among these, signaling 

pathways regulated by protein tyrosine kinases (PTKs) and 

protein tyrosine phosphatases (PTPs) are the most 

important[19-21].The mechanism by which the protein 

kinases and protein phosphatase enzyme regulate the 

signaling pathways is through phosphorylation and de-

phosphorylation of proteins. PTKs mediate the 

phosphorylation of tyrosine residues in proteins, while 

protein tyrosine phosphatases (PTPs) de-phosphorylate 

https://doi.org/10.47191/ijpbms/v1-i7-02
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phosphorylated tyrosine[21, 22].They play important 

physiological roles and are involved in the pathogenesis of 

diseases such as diabetes, obesity, autoimmune disorders, 

cancer, and neurological disorders[22]. The reversible 

protein tyrosine phosphorylation catalyzed by the 

coordinated actions of these two families of the enzyme has 

great importance in the regulation of the signalingof 

processes in many physiological activities such as growth 

and proliferation, differentiation and survival or apoptosis, 

as well as adhesion and motility[23, 24].    

From the family of PTPs the Protein tyrosine phosphatase 

1B (PTP1B), a non-receptor type tyrosine phosphatase, 

has emerged as a critical regulator of multiple signaling 

networks involved in human disorders such as diabetes, 

obesity, and cancer because it mediates the de-

phosphorylation of key proteins in different signaling 

pathways[25, 26]. PTP1B has been reported to be 

overexpressed in type II diabetes and obesity and it 

contributes to oncogenic properties through activation of the 

non-receptor tyrosine kinase Src[19, 27-29]. The genetic 

deletion of PTP1B increases insulin and leptin sensitivity, 

indicating the importance of PTP1B inhibitors[30]. In this 

article, scientific reports on the role of PTP1B in the 

development of obesity, diabetes, and cancer andits potential 

inhibitorswere reviewed.  

2. INSULIN SIGNALIN PATHWAY  

Insulin is a peptide hormone that has an anabolic effect and 

is produced by the B cells of the pancreas. It acts via the 

receptors located on the target organs like the liver, skeletal 

muscle, fat, and others, where it has pleiotropic effects[31-

33]. In the liver, it promotes glucose storage into glycogen 

and decreases glucose output and in the fat, it stimulates 

glucose transport through translocation of GLUT4[34, 35]. 

All of the proteins involved in insulin action in the body, as 

well as the factors that regulate this action, make up the 

insulin signaling pathway (Fig. 1)[36, 37].Insulin's signal 

transduction pathway is mediated by the insulin receptor 

(IR) on the cell membrane[38, 39].Based on whether the 

IRS (insulin receptor substrate) is mediated, IR-mediated 

signal transduction pathways can be categorized into IRS-

mediated signal transduction pathways and non-IRS-

mediated signal transduction pathways[37, 40].In the 

insulin signal cascade, the insulin-boundinsulinreceptor 

(IR),insulinreceptorsubstrate(IRS),and Akt are 

sequentially phosphorylated, resulting in glucose up-take 

via the translocation of glucose transporter type 4 

(GLUT4)[41-43]. 

 
Figure1. The insulin signaling pathway, Adapted from "Metabolomics of type 1 and type 2 diabetes," by Arneth, B., 

Arneth, R., & Shams, M. (2019), International journal of molecular sciences, 20(10), 2467[44]. 

 

3. LEPTIN SIGNALING PATHWAY 

Leptin is a critical hormone that regulates mammalian 

energy homeostasis [45, 46]. It is primarily synthesized and 

secreted by white adipose tissue and mediates its effects by 

binding to leptin receptors (LepRs) expressed in the brain 

and several peripheral tissues to maintain energy balance[47, 

48]. LepRb is strongly expressed in the hypothalamus and 

other areas of the brain[49]. Leptin plays an important role 

in regulation of food consumption, energy expenditure, 

metabolism, neuroendocrine axis and immune function[50, 

51]. The binding of this hormone to its receptor in the brain 

leads to the activation of multiple signal transduction 

pathways[52, 53]. Circulating leptin levels in the blood are 

directly related to the amount of body fat, reflecting the state 

of long-term energy reserves[54, 55]. Leptin levels fluctuate 

with changes in caloric intake, with a marked decline during 

starvation and an increase in overnourished and obese 

states[56-58]. Leptin levels increase with insulin, 
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glucocorticoids and pro-inflammatory cytokines and 

decrease with catecholamines [59, 60]. The ob/ob mice, 

which are Leptin deficient and db/db mice, which are 

LepRb-deficient have shown hyperphagia, extreme obesity, 

infertility, and reduced linear growth[53]. In human loss of 

function or congenital deficiency of leptin or mutations of 

the leptin receptor (LepRb) caused hyperphagia and morbid 

obesity[61, 62]. 

3.1. Leptin signaling and energy homeostasis 

Leptin is strongly expressed in the hypothalamus, especially 

in the arcuate nucleus (ARC) and the ventromedial 

hypothalamus (VMH)[63, 64]. Multiple signaling pathways 

like Janus kinase 2 (JAK2) /signal transducer and 

activator of transcription 3 (STAT 3) and STAT5, 

IRS/PI3K, SHP2/MAPK, and AMPK/ACC are activated by 

binding of leptin to LepRb (Fig. 2)[53, 65, 66]. The Binding 

of leptin to leptin receptors activates JAK2, which results 

in phosphorylation of the receptor, thereby recruiting 

signal transducer and activator of transcription 3 

(STAT3)[67, 68]. 

STAT3isphosphorylatedbyJAK2,whichregulatesappetite 

and energy expenditure[69, 70].Activated JAK2 

stimulates phosphorylation of STAT3 which regulates 

appetite and energy spending[71]. Tyrosine residues 

Tyr985, Tyr1077, and Tyr1138 are phosphorylated in the 

cytoplasmic domain of LepRb by activated JAK2[72].  

LepRb affects energy homeostasis through both tyrosine-

dependent and -tyrosine-independent mechanisms. 

Activation of JAK2/STAT3 by leptin is crucial for energy 

homeostasis and neuroendocrine function[48, 73]. 

Two neuronal populations in the ARC co-expressing 

proopiomelanocortin (POMC)/cocaine- and amphetamine-

regulated transcript (CART), and agouti-related peptide 

(AgRP) and neuropeptide Y (NPY) are directly targeted by 

leptin[72, 74].  Leptin reduces food consumption, increases 

spending of energy, and decreases body weight by 

stimulating POMC/CART expression and inhibiting 

AgRP/NPY expression[63, 75, 76]. In the lateral 

hypothalamic area (LHA), this hormone also hinders food 

consumption by down regulation of melanin-concentrating 

hormone (MCH) and orexins[77, 78].  Also, it is involved in 

the inhibition of feeding by stimulating the expression of 

brain-derived neurotrophic factor and steroidogenic factor-1 

(SF-1) neurons in the VMH[79, 80]. Induction of a 

suppressor of cytokine signaling 3 (SOCS3) ends the leptin 

signaling cascade[81, 82].  SOCS3 inhibits JAK2/STAT3 

signaling, providing a negative feedback mechanism[83]. 

Additionally, PTP1B is associated with the negative 

regulation of leptin signalling [84, 85]. Leptin resistance is a 

condition observed in obese individuals, in which there is a 

high level of adipose leptin expression and plasma leptin, 

but unable to decrease excess adiposity[47].  

 
Figure 2. Multiple leptin signaling pathways, Adapted from "Leptin signaling," by Park, H. K., &Ahima, R. S. (2014), 

F1000 prime reports, 6, 73. https://doi.org/10.12703/P6-73[53] 
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4. ONCOGENIC SRC KINASES 

Enzymes that mediate the transfer of the phosphate group to 

tyrosine residues of the target protein are those belonging to  

 

the tyrosine kinase enzyme family[86, 87]. These enzymes 

regulate physiological processes by transmitting signals 

from the surface of the cell to cytoplasmic proteins and the 

nucleus[88, 89].  Non-receptor tyrosine kinases (NRTK) are 

a sub-group of tyrosine kinases[89]. Non-receptor tyrosine 

kinase Src, are important components of signaling pathways 

that regulate fundamental cellular functions such as cell 

differentiation, apoptosis, survival, and proliferation[90, 91]. 

Deregulation, constitutively hyper-activation, and/or 

overexpression of non-receptor tyrosine kinase Srchas been 

implicated in malignant transformation and 

carcinogenesis[89, 92]. Src kinase activity has been reported 

to be higher in many cancer cell lines, like breast cancer, 

lung cancer, and colon cancer cells[93-95]. There are several 

different ways in which Src is controlled[96]. The two main 

phosphorylation sites on human Src are the 

autophosphorylation site Y419 and the negative regulatory 

COOH-terminal phosphorylation site Y530[97]. 

 

5. PROTEIN TYROSINE PHOSPHATESES (PTP) 

Protein tyrosine phosphatases (PTPs) are enzymes that 

catalyze the dephosphorylation of phosphorylated tyrosine 

(Tyr) on the target protein[98]. PTPs are signaling enzymes 

involved in the control of various cellular functions in the 

body[99, 100].  The PTPs are involved in the development 

of many diseases, understanding the mechanism of action of 

these enzymes is important to know enzyme's activity[101]. 

A protein phosphatase, an enzyme that removes a phosphate 

group from the phosphorylated amino acid residue of its 

substrate protein is divided into two main groups based on 

substrate specificity[102]. Protein phosphatases (PPs), 

enzymes that specifically hydrolyze serine/threonine, and 

protein tyrosine phosphatases (PTPs) enzymes that 

hydrolyzephosphotyrosin[102, 103]. PTPs are involved in 

the dephosphorylation of the target proteins like mitogen-

activated protein (MAP) kinases and receptor kinases, 

resulting in the proper regulation of various signal-

transducing pathways[104, 105]. The PTP superfamily of 

enzymes functions in a synchronized manner with the 

protein tyrosine kinases to control signaling pathways that 

underlie several fundamental physiological processes[106]. 

As a superfamily, despite the diversity in size, spatial 

structure, or intracellular location, PTPs are characterized by 

a homologous PTP signature motif, (I/V) 

HCXAGXXR(S/T) G, and a catalytic WPD loop, which are 

highly conserved in the catalytic domain from bacteria to 

mammals[107, 108]. Among the PTP families, the Protein 

tyrosine phosphatase 1B (PTP1B) is the most important 

enzyme in obesity, diabetes, and cancer[84, 109].   

 

6. PROTEIN TYROSINE PHOSPHATESES 1B 

(PTP1B) 

PTP1B is one of the families of protein tyrosine phosphatese 

enzymes that participate in intracellular signaling and 

metabolism by dephosphorylation of tyrosine residue, serves 

as a negative regulator of leptin and insulin pathways, and 

has an important role in cancer development[87, 110, 111]. 

It is a widely expressed cytosolic soluble protein with a 

molecular weight of around 50 kD[112]. Full-length PTP1B 

comprises 435 amino acids and has a canonical PTP domain 

with ~280 residues in the N-terminal[108, 113]. For 

crystallization and enzymatic assays, shorter versions of 

PTP1B (298 or 321 residues) are usually employed[114]. 

The 298 residue version is organized in eight α helices and 

eleven β strands[114]. R loop (Val113–Ser118), lysine loop 

(Leu119–Cys121), WPD loop (Thr177–Pro185), S loop 

(Ser201–Gly209), Q loop (Ile261–Gln262), α3 helix 

(Glu186–Glu200), α6 helix (Ala264–Ile281) and α7 helix 

(Val287–Ser295)[114, 115]. The crystallographic studies 

show that the WPD loop of PTP1B exhibits an open or a 

closed state[116]. Opened state of the WPD loop makes the 

binding pocket easily accessible to the substrate[116]. When 

the substrate binds to the WPD loop, the conformation of the 

loop changed to a closed state to form a tight binding 

pocket. Thus, the WPD loop is essential for the catalytic 

function of PTP1B[117, 118]. In the dephosphorylation 

process by PTP1B, the enzyme and phosphotyrosine-

containing substrate form an enzyme-substrate 

complex[119]. The binding of the substrate results in a 

conformational change of the enzyme by moving the WPD 

loop from the open state to the closed state, optimizing the 

interactions of its residues, Phe180 and Asp181, with 

phosphotyrosine[114, 120].  

 PTP1B is a therapeutic target for the development of drugs 

against obesity, type2 diabetes, and cancer[121, 122]. It has 

been shown that inhibition of PTP1B enhances the activity 

of insulin and leptin, and decreases the activity of non-

receptor tyrosikinesSrc, by increasing phosphorylation at 

Y530 of Src[84, 85, 123]. In obesity, it negatively regulates 

leptin signaling through the de-phosphorylation of Janus 

kinase 2 (JAK2) and signal transducer and activator of 

transcription 3 (STAT3)[30, 124]. In the case of diabetes 

mellitus in the insulin signaling pathway, it has been shown 

to directly interact with the activated insulin receptor (IR) or 

insulin receptor substrate-1 to dephosphorylate 

phosphotyrosine residues, thus further reducing insulin 

sensitivity or shutting down signalling [125]. The over-

expression of PTP1B has been shown to inhibit the IR 

signaling cascade and the expression of PTP1B increases in 

the insulin-resistant state[126, 127]. Different studies 

indicated that PTP1B is the primary phosphatase 

dephosphorylates Src in several human breast cancer cell 

lines and suggest a regulatory role of PTP1B in the control 

of Src-kinase activity[128, 129]. These make PTP1B a 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-tyrosine-phosphatase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-tyrosine-phosphatase
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highly validated therapeutic target for obesity and 

diabetes[48].  

 

7. INHIBITION OF PTP1B 

Remarkable progress has been made in the development of 

potent and selective PTP1B inhibitors that target both active 

and allosteric sites [130, 131]. Inhibitors of PTP1B against 

the active site are difficult to discover because of the highly 

conserved sequence[132]. There are also multiple charge 

requirements of the ligands, which leads to loss of 

selectivity and permeability in the catalytic site[114]. A 

secondary allosteric site has been designated for PTP1B and 

several small-molecule inhibitors that occupy this site 

stabilize an inactive conformation of PTP1B[133]. The 

Discovery of the allosteric site creates opportunities to 

develop selective inhibitors against PTP1B[134, 135]. 

Allosteric inhibition of PTP1B activity using different 

inhibitor molecules is a promising technique to overcome 

the challenges of targeting the active/ catalytic site[134, 

136]. Targeting the allosteric sites as drug discovery, have 

fewer side effects, good selectivity, higher specificity, and 

lower toxicity[137]. This is because it is not well conserved, 

possesses is substantially less polar compared with 

evolutionarily conserved catalytic sites[138]. More potent 

and orally bioavailable allosteric inhibitors are strongly 

desired as excellent anti-diabetic, anti-obesity, and anti-

cancer drugs[139].   

 

8. POSSIBLE INHIBITORS OF PTP1B 

According to Morshta   et al., (2017) [140]and Ito et al., 

(2018)[107]4-(biphenyl-4-ylmethylsulfanylmethyl)-N-

(hexane-1-sulfonyl) benzoylamide (KY-226)(Fig.3) was 

identified asa non-competitive inhibitor which bound to the 

allosteric site of PTP1B with potent and selective inhibitory 

activity against (IC50=0.25 µM). Studies showed that the 

oral absorption of the compound in mice is high and there is 

maximum drug concentration[107, 141]. The 

pharmacological evaluation of KY-226 showed that the 

compound inhibited human PTP1B activity (IC50 ¼ 0.28 

mM), but did not exhibit PPARg agonist activity [107]. 

KY-226 protects neurons from cerebral ischemic injury by 

inhibiting the PTP1B[141, 142]. In human hepatoma-

derived cells (HepG2), KY-226 (0.3e10 mM) 

increased the phosphorylated insulin receptor (pIR) 

produced by insulin[107]. The studies concluded that 

KY-226 exerted anti-diabetic and anti-obesity effects 

by enhancing insulin and leptin signaling, respectively.  

                       
Figure 3. KY 226 PTP1B allosteric inhibitor 

 

Recently, numerous studies have shown the possible 

treatment options for obesity, diabetes, and cancer using 

peptides[28]. Small peptide compounds can be used as 

specific inhibitors for PTPs (Fig 2.)[143]. Using peptides as 

PTP1B inhibitors is beneficial because peptides have less 

toxicity, less immunogenicity, are rapidly synthesized, and 

are easily modified[144, 145]. Studies showed that 

dipeptides and tripeptides were capable of binding and 

interacting to the allosteric site of PTP1B [28, 131, 143, 

146]. The peptide compounds tested as inhibitors of PTP1B 

decreased the enzymatic activities with IC50 values in micro-

molar ranges[147].  

 

 

IC50=0.25 µM [138] 
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Figure 4.Selected peptide PTP1B inhibitors 

 

Studies indicated that different natural compounds inhibit 

various types of enzymes, including PTPs[148]. These 

inhibitorscan be considered as potential anti-obesity, anti-

diabetic and anticancer agents[149, 150]. Some of these PTP 

inhibitors can be extracted from plants, algae, or 

microorganisms[151, 152]. Among natural molecules, 

alpha-lipoic acid, Curcumin, and cinnamaldehydehave 

beenpreviously reported to have anti-diabetic and anticancer 

potentials byinhibitingPTP1B [153, 154]. 

 

 

 
Figure5. Selected natural compounds that decrease the activity of PTP1B 

 

  

phe – Asp, 

 IC50 = 52.10 µM [143] 

 

Asp-phe  , 

 IC50 = 52.60 µM[143] 
 

EJJ- Amide 

IC50 = 40.00 nM[3] 

BzN-EJJ-amide 

IC50 = 5.00 nM [8] 

IC50 = 1.00 nM[8] 

 

Curcumin [152] Alpha-lipoic acid (ALA) 

[153] 

Cinnamaldehyde 

[153] 
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CONCLUSION 

In conclusion, PTPs control the levels of protein tyrosine 

phosphorylation both in normal and disease conditions and it 

has both positive and negative effects on cellular signal 

transduction. This enzyme is involved in the development of 

diseases like obesity, diabetes, and cancer.  PTP1B serves as 

a negative regulator of leptin and insulin signaling pathways 

and has an important role in cancer development. It is a 

therapeutic target for the development of drugs against these 

diseases.  
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