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ABSTRACT 

 

 

ARTICLE DETAILS 

 
Existing models of survival analysis dealing with group data have advantages and limitations too. 

Assumptions of the models need to be verified. Problem arises when one or more assumptions of 

a model are not satisfied. Methods of survival analysis, inter alia assumes homogeneity of treatment 

and related factors during the follow-up periods. However, in practice, such assumptions do not 

hold. The proposed method (Geometric mean approach) is non-parametric, simple and satisfies 

desired properties from measurement theory angle. Focusing on individual patient, it  helps in 

mathematical diagnosis of disease like cancer of a particular type, disease intensity in terms of the 

chosen measurable factors/variables, identification of bad prognosis factors of an individual and 

quantification of progress or deterioration of a patient over time (analogous to hazard function of 

an individual). The method can help the researchers and practitioners to make meaningful analysis 

and drawing meaningful conclusions including estimation of hazard function of sample patients 

without making any assumption. Empirical verifications of the proposed method along with its 

robustness and estimation of hazard function and clinical validations are proposed as future studies. 
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1. INTRODUCTION 

Survival analysis considers the time between a starting point 

(e.g. diagnosis of cancer, Bone marrow transplantation 

(BMT), etc.) and the terminating point (i.e. death or time until 

an event occurs) and estimate proportion of the persons who 

survived beyond a specified time interval without occurrence 

of a particular event.  In between the starting point and the 

terminating event, there are other events (or state) like 

progress, deterioration, relapse or development of adverse 

reaction or a new disease entity (like infection). An individual 

or a sub-group of individuals may transit from one event to 

the next event or the previous event. However, for all patients, 

the terminating event may not occur during the period of 

observations of the study. Thus, number of individuals 

between two successive events is different.   

Two popular approaches to survival analysis are survival 

function and hazard function. Both depend on time. Large 

number of factors can influence such functions.  

 

Features of data: 

- Time-to-event outcomes defined as the time from 

the beginning of observation (date of 

diagnosis/surgery/BMT) to the occurrence of the 

relevant events (disease recurrence or death) are 

continuous variables. 

- The event of interest i.e. time to death may not occur 

at the end of follow-up and thus time to event is 

unknown. This is called censoring. Censoring may 

also take place in case one or patients are lost during 

the period of study or they develop a different event 

which is extremely difficult or impossible for further 

follow-up.    

- A patient can experience relapse and the time of 

occurrence of the event called “relapse” is not 

known. Thus, it is difficult to know correctly the 

time period between a confirmed response and the 

first relapse of cancer. 

- Survival data are longitudinal. 

- Usually, survival data are heavily skewed and do not 

follow Normal distribution. Thus, parametric 

https://doi.org/10.47191/ijpbms/v1-i6-01
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statistical analysis assuming normality cannot be 

applied directly. 

- Starting time of all the patients being followed-up 

are different 

- Observation period of the patients who died is 

different from the same for those who still survive. 

-  For each time interval, probability (of being a 

survivor at the end of the interval subject to the 

condition that the subject was a survivor at the 

beginning of the interval) is calculated which is a 

conditional probability.  

- There are explanatory variables (like blood pressure) 

which change in value over time i.e. time-dependent 

covariates. Inclusion of such time-dependent 

covariates in a regression analysis needs special 

considerations since they may be in ratio scale and 

continuous (like age or tumor size), binary (male or 

female), unordered categorical (histology) or 

ordered categorical or ordinal (performance status or 

stages of FIGO (International Federation of 

Gynecology and Obstetrics)). However, ordinal 

responses or FIGO do not satisfy equidistant 

property i.e. distance between two successive 

classes (or response categories) is not same and thus, 

arithmetic aggregation is not meaningful. 

 

2. SURVIVAL FUNCTION AND HAZARD FUNCTION 

Considering longitudinal data, two probability functions are 

estimated viz. survival function and hazard function. Survival 

function 𝑆(𝑡) reflects the probability that a person survives 

longer than some specified time t. Hazard function 𝜆(𝑡) gives 

the probability that an individual who is under observation at 

a time t has an event at that time. Blagoev et al. (2012) 

described hazard rate (or failure rate) as the rate of occurrence 

of the event during a given time interval. Thus, 𝜆(𝑡) relates to 

the incidents/event rate, and 𝑆(𝑡)  reflects the cumulative 

occurrence or non-occurrence. Note that hazard is a measure 

of risk. Higher value of hazard in a time-interval implies 

greater risk (or failure) in that time interval. Results and 

interpretation depend heavily on the properties of  𝑆(𝑡) and 

𝜆(𝑡)  along with associated estimation procedures. 

Popular approaches to survival analyses are Kaplan–Meier 

plots with Log-rank test, and Cox proportional hazards 

regression.  

2.1 Kaplan-Meier estimates and Log-rank test: 

Kaplan-Meier method for estimating the survival function is 

a special case of the life table technique, where the series of 

time intervals are formed and the death occurs at the 

beginning of an interval along with the following major 

assumptions: 

 At any time-point, survival prospects of patients 

who are censored are equal to those who continue to 

be followed. This assumption is not easy to verify.  

 Equal survival probabilities for patients introduced 

early and late in the study. Large data are required to 

test the assumption involving data for different 

subsets. 

 Event of interest happens at the time specified. This 

could be problematic when recurrence/relapse are 

detected at regular examinations and may result in 

upward bias of the survival probabilities. 

Consider that n-patients are being observed at survival times 

𝑡1, 𝑡2, … … … , 𝑡𝑛 and r-deaths.  Clearly, 𝑟 < 𝑛.  Let the 

ordered times are 𝑡(1) < 𝑡(2) <, … … , < 𝑡(𝑟).  

Let 𝑛𝑗  for 𝑗 = 1, 2, … … … , 𝑟 denote the number of patients 

who are alive just before 𝑡(𝑗). 

Let 𝑑(𝑗) be the number of patients who die till 𝑡(𝑗). 

Then probability of death of a patient in the interval 

[ 𝑡(𝑗), 𝑡(𝑗+1))  can be taken as 
𝑑(𝑗)

𝑛𝑗
 and estimated survival 

probability in the interval is 
𝑛𝑗− 𝑑(𝑗)

𝑛𝑗
 and Kaplan-Meier 

estimate of the survival function is 𝑆(𝑡) = ∏
𝑛𝑗− 𝑑(𝑗)

𝑛𝑗
𝑡(𝑗)≤𝑡

. For 

𝑡 < 𝑡(1), 𝑆(𝑡) is taken as 1 

Note that 
𝑑(𝑗)

𝑛𝑗
  for different intervals of time reflect hazard 

function 𝜆(𝑡).  

Clearly, 𝑆(𝑡) = 1 −  𝜆(𝑡). Thus, instead of survival function, 

one can use hazard function. 

2,2 Major disadvantages of Kaplan-Meier  method: 

 Survival probabilities are not always reliable especially 

for heavy censoring.  

 At the end points, the Kaplan-Meier survival curve 

cannot provide the reliable estimates. 

 Kaplan-Meier curve is not a smooth continuous 

functions and thus, extrapolation is not possible. 

  Computation of survival probability at a point can be 

difficult.  

 Censored subjects may reduce the cumulative survival 

between intervals. 

  Reliability of survival curve gets  reduced with increase 

in number of censored  patients  

 Kaplan-Meier estimators show lower asymptotic 

efficiency in comparison to same under the parametric 

setup (Miller, 1981). 

 Survival functions based on various factors may 

differ. Factors which may influence survival 

functions could be type of disease; type of 

transplantation (type of BMT from close 

relatives/siblings or from unknown donor); type of 

treatments (use of thalidomide, bortezomib, 

lenalidomide and other classes of medications like: 

glucocorticoids, DNA alkylating agents, 

doxorubicin, cisplatinum, etoposide, etc. to patients 

with Multiple  Myeloma(MM) (Rajkumar and 

Kumar,2016); Raza et.al. 2017), age, gender, socio-

economic status of patients and other factors viz. 
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risk of infection until new cells engraft, development 

of acute/chronic Graft-Versus-Host Disease 

(GVHD), etc. Bland and Altman (2004) found that 

survival curve for anaplastic astrocytoma was higher 

than the same for glioblastoma. But, that does not 

mean the population estimate of survival of patients 

with anaplastic astrocytoma was worse than the 

patients with glioblastoma. 

 

The KM approach helps to compare two groups at chosen time 

point(s) but fails to compare total survival experience of the two 

groups. The Log-rank test compares the entire survival 

experience between groups and can be taken as a test of identical 

survival curves. 

Null hypothesis of log-rank test, 𝐻0:  𝑃𝑟𝑜𝑏(𝐸𝑣𝑒𝑛𝑡 𝐸)𝐺𝑟𝑜𝑢𝑝 1 = 

𝑃𝑟𝑜𝑏(𝐸𝑣𝑒𝑛𝑡 𝐸)𝐺𝑟𝑜𝑢𝑝 2 

For each time point, one to compute observed and expected 

number of deaths in each group assuming no difference between 

the groups. For example, let number of alive patients at the 

starting point in Group-1 and Group-2 be 𝑛1and 𝑛2 respectively 

where 𝑛1 + 𝑛2 = 𝑛. So risk (probability) of death is 
1

𝑛
 . Expected 

number of death under the null hypothesis in Group-1 and Group-

2 are  𝑛1.
1

𝑛
=

𝑛1

𝑛
 and 

𝑛2

𝑛
 respectively. However, with passage of 

time (weeks/months), 𝑛1,  𝑛2  and hence,  𝑛  may get reduced 

depending upon number of deaths in each group. Thus, one can 

compute expected number of deaths for each group for each 

subsequent time point whenever death occurs and also total 

numbers of expected deaths for each group during the entire time 

period of the study. In case of censoring of survival time, an 

individual is taken to be at risk of dying in the time point of the 

censoring but not in subsequent time points. Considering the 

observed and expected number of deaths for each group at 

different time points, the χ2 statistic can be used to test the null 

hypothesis. 

The log-rank test provides a p-value for the differences 

between the groups; it offers no estimate of the actual effect 

size. In other words, it offers a statistical, but not a clinical, 

assessment of the factor's impact. 

The log-rank test is based on the same assumptions that 

censoring is not related to prognosis, survival probabilities 

are the same for subjects introduced early and late in the 

study, and the events happened at the times specified. 

Violation of the assumptions can distort the result especially 

when censoring is more predominant in one group than 

another or when survival curves intersects. In addition, log-

rank test fails to provide estimate of the size of the difference 

between the groups and thus offers a statistical, but not a 

clinical, assessment of impact of the factor. Thus, some more 

assumptions are needed about the data and use of methods 

like hazard ratio, Cox proportional hazards(PH) model, etc.       

2.3 Cox PH model: 

The semi-parametric Cox PH model helps to assess effect of 

factors like treatments, etc. along with the effects of multiple 

covariates on survival. Survival rate i.e. proportion of 

subjects surviving at t, denoted by 𝑆(𝑡) is negatively related 

to hazard rate i.e. rate of failure or death at a given time (say 

t), denoted by 𝜆(𝑡). It can be proved that 𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡)  
  where 

𝑓(𝑡) is the overall probability density of failing at time t and 

is equal to 𝑓(𝑡) =
𝜕𝑆(𝑡)

𝜕𝑡
  for continuous case. In other words,  

𝜆(𝑡)  and 𝑆(𝑡)  are related by  𝜆(𝑡) = −
𝑑𝑙𝑜𝑔 𝑆(𝑡)

𝑑𝑡
. So, 

knowledge of either 𝜆(𝑡) or 𝑆(𝑡) will facilitate determination 

of the other and either can be used for further statistical 

analysis. 

However, for assessment of covariates as independent/ 

predictor variables for prediction of survival, selection of 

covariates needs to be done carefully with chosen strategy 

avoiding the confounders (Clark et al.2003; Bradburn et al. 

2003; Hosmer et al.2008). Combining covariates in interval 

or ratio scales and others in nominal or ordinal scales may be 

problematic. Chakrabartty (2020) provided a method of 

converting discrete ordinal scores to continuous scores in a 

desired score range following normal distribution. 

Assumptions of Cox PH regression include: 

(i) A common baseline hazard function for all 

patients  

(ii) Effect of a covariate is same at all the time 

points  

(iii) Log-hazard is linearly related withthe 

covariates.  

Under these assumptions, Cox PH regression model 

involving k-covariates 𝑋1, 𝑋2, … . . , 𝑋𝑘  is given by 𝜆(𝑡) =

𝜆0𝑒∑ 𝛽𝑖𝑋𝑖
𝑘
𝑖=1  where 𝜆0the base line hazard (estimated in non-

parametric fashion) and 𝛽𝑖 is the coefficient of 𝑋𝑖 reflecting 

effect size of the i-th covariate. 

𝛽𝑖 > 0 ⟹ 𝑋𝑖 is positively related to hazard i.e. increase in 𝑋𝑖 

will increase 𝜆(𝑡) and decrease length of survival.  𝑒𝛽𝑖  is the 

hazard ratio (HR). 

Thus, the covariates can be ranked in terms of values of beta-

coefficients or equivalently by HR. In cancer studies, 𝑒𝛽𝑖 >

1(or 𝛽𝑖 > 0) means 𝑋𝑖  is a bad prognostic factor. It is 

desirable to have more 𝛽𝑖
′𝑠 < 0.  

Clearly, ratio of two hazard functions of two groups is 
𝜆1(𝑡)𝑓𝑜𝑟 𝐺𝑟𝑜𝑢𝑝 1

𝜆2(𝑡)𝑓𝑜𝑟 𝐺𝑟𝑜𝑢𝑝 2
 = Constant.  

Note that the Cox regression model does not involve the 

residual error term i.e. absolute difference between actual and 

predicted value of hazards. This is unlike the regression 

equation where residual error 𝜖𝑖  is assumed to follow 

𝑁(0, 𝜎2). This is due to the fact that Cox regression model 

introduces time-dependent censored variables for cases when 

no analyzed end point has occurred during the follow-up.  

Logistic regression can help to investigate relationship 

between various disease events and the risk factors. But the 

Cox model is preferred over the logistic model, since the later 

ignores survival time and censoring information (Fabsic et 

al.2011)  
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Violation of the assumption of proportionality of the hazards 

of the Cox regression model, may give distorted results. To 

investigate effect of gender on survival time of 48 patients 

who were diagnosed and died of multiple myeloma (MM), 

Mamudu and Tsokos (2020) used 16 identified risk factors 

(11 continuous risk factors, and 5 categorical risk factors).  p-

value  of the log-rank test was 0.45 implying rejection of the 

null hypothesis of no difference with respect to gender. 

Similarly,  in multivariable Cox regression analysis, Babińska 

et al. (2015) found violation of the proportional hazard 

assumption for covariates like concentrations of 

homocysteine and sodium which increased risk of death and 

recommended need to verify this assumption of 

proportionality.  In case two hazard functions corresponding 

to two groups cross, it indicates violation of the assumption 

of proportionality of Cox PH model. If one draws regression 

line of residuals across the time-axis and if the obtained line 

is horizontal, constant proportionality of hazard is ensured 

(Abeysekera and Sooriyarachchi, 2009). Global goodness-of-

fit test proposed by Schoenfeld is more rigors for testing the 

PH assumption (Schoenfeld, 2017).  

In case of non-satisfaction of the assumption of 

proportionality, the Cox regression model needs to be 

modified to Cox stratified regression model (allows inclusion 

of stratification (categorization) of a variable not satisfying 

the assumption of the proportionality and does not require  to 

define the interaction relationship between a stratified 

variable and the observation time) (Ata and S¨ozer, 2007). 

2.4 Parametric models: 

Parametric PH models like Exponential, Weibull, Gompertz 

models select different hazard functions which are assumed 

to follow specific probability distribution and thus, differ 

from Cox semi-parametric PH model. Parametric models 

usually have smaller standard error and thus, are considered 

as more efficient. However, verification of the assumption of 

hazard function following a specific probability distribution 

may be difficult. 

Accelerated failure time (AFT) model with focus on survival 

function differs from Cox models. Parametric AFT model 

uses regression of logarithm of the survival time over the 

covariates. It can be an alternative to the Cox model (Wei, 

1992).  Commonly used distribution in AFT model is log-

logistic distribution. However, other distributions like log-

normal, gamma and inverse Gaussian distributions, can also 

be suitable for AFT models. AFT allows derivation of a time 

ratio, which is easier to interpret than a ratio of two hazards. 

However, assumed distributions of parametric Cox models, 

AFT etc. are required to be verified with appropriate 

statistical tests. Uses of AFT models in medical research are 

less popular (Kay and Kinnersley, 2002) 

2.5 Multivariate Linear Regression: 

For predicting survival time (t) with known values of 16 

chosen risk factors and their pairwise interactions, Mamudu 

and Tsokos(2020) fitted multivariate linear regression 

equation of the form  𝑡𝑖 = 𝛼 + ∑ 𝛽𝑖
𝑘
𝑖=1 𝑋𝑖 +∑ 𝜌𝑖𝑗𝑋𝑖𝑋𝑗 +𝑘

𝑖≠𝑗=1

𝜖𝑖  where 𝜌𝑖𝑗   is the coefficient parameter of interaction 

between the i-th  and j-th  risk factors, and 𝜖𝑖 is the error to 

predict survival time for the i-th patient, i=1, 2, …….48, and 

k=16, the number of risk factors. 

However, application of such model requires verification of 

the following assumptions of multivariate linear regression: 

 Linearity: usually by correlation between the 

response and the continuous risk factors. However, 

high value of correlation between X and Y may not 

imply linearity. Chakrabartty (2020 b) gave 

examples of 𝑟𝑋𝑌 ≥0.9 where X takes values 1, 2, …., 

30 and 𝑌 = 𝑋2  or 𝑋3 or 𝑙𝑜𝑔10
𝑋  and suggested for 

testing of significance of standard error of prediction 

than testing significance of correlation coefficient.  

 Normality and Homoscedasticity: Residual error to 

follow 𝑁(0, 𝜎2) 

 Multicollinearity: If a pair of risk factors is highly 

correlated, it may amount to double counting. 

Presence of multicollinearity, if any needs to be 

avoided. High value of the variance inflation factor 

(VIF) indicates existence of multicollinearity. 

Researchers differ in their approaches, if VIF is 

high. 

 No autocorrelation: Autocorrelation is the degree of 

similarity between the values of the same variables 

over successive time intervals. Presence of 

autocorrelation in the residuals of a model implies 

that the model is not sound.  Checking whether 

residual errors are independent and uncorrelated, 

usually Durbin-Watson test is used with null 

hypothesis of no autocorrelation 

 Goodness of fit: High value of 𝑅2  defined as 1 −
𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
  implies goodness-of-fit of a statistical 

model. It increases with increase in number of 

predictor variables. Better measure is 𝑅𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 - 

𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑓𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙⁄

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 𝑑𝑓𝑇𝑜𝑡𝑎𝑙⁄
 

2.6 Cumulative Incidence in Competing Risks: 

Competing risks are common in medical research. Examples 

of competing risks are:  Cancer-related mortality and deaths 

due to reasons other than cancer; death due to cardiovascular 

causes and death attributable to non-cardiovascular causes; 

etc. Time-to-event analyses without considering competing 

risks can lead to biased estimates of risk for patients with 

multi-morbidity and belonging to higher age category 

(Abdel-Quadir et al. 2018). Existing methods of survival 

analysis like Kaplan-Meier estimation of cumulative 

incidence, log-rank test for comparing cumulative incidence 

curves, Cox model for the assessment of covariates, etc. may 

lead to biased results in analysis of competing risks data 

(Kim, 2007). The author found that analysis of “death” 

ignoring CR resulted in erroneous results in terms of high or 

low magnitude of error depending on high or low CR 

https://en.wikipedia.org/wiki/Log-logistic_distribution
https://en.wikipedia.org/wiki/Log-logistic_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
file:///C:/Users/acer/Desktop/Survival%20Analysis%20-Multivariate%20data%20analysis.html%23bib10
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incidence respectively and suggested analysis of joint events 

as a single end point along with CR, which offers a 

comprehensive approach to addresses general and specific 

research questions like difference between cumulative 

incidence of TRM (CIT) and cumulative incidence of relapse 

(CIR) in  myeloablative versus non-myeloablative HSCT 

studies.  

CR regression analysis helps in identification of risk factors 

associated with each competing risk and also to find reasons 

of difference in the cumulative incidence curves.  CR 

regression analysis can be carried out by models given by 

Fine and Gray (1999) (based on proportional hazards) and 

Klein and Andersen (2005) (based on pseudo values 

emerging from a jackknife statistic). Empirically, the above 

said two methods were in close agreement. However, the 

issues relating to sample size and power calculation in CR 

data are needed to be addressed. 

 

3. PROSED METHOD 

Assuming there are n- key non-nominal variables, observed 

values of the i-th person can be presented as a vector 𝑿𝒊 =

 (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑛 )𝑇 and the corresponding value of standards 

(lower value) as another vector  𝑿𝟎 =  (𝑋01, 𝑋02, … , 𝑋𝑜𝑛)𝑇 

where each variable has been transformed to be positively related 

to cancer. For example, variables like Platelet count, WBC count, 

% Myeloid cells in peripheral blood, etc. whose lower value 

indicates higher risk to cancer, reciprocal of such variables are 

taken. For example, standard for Platelet count may be taken as 
1

450,000
 to 

1

140,000
 cells/ 𝑚𝑐𝐿−1  or 

1

450
 to 

1

140
 thousand/mm3. For 

variable like Basophils (DLC), where instead of a range, a single 

value is given in the reference range; an agreed particular value 

may be taken as the standard.  

Consider the unit free ratios 𝑌𝑖1 =  
𝑋𝑖1

𝑋01
, 𝑌𝑖2 =  

𝑋𝑖2

𝑋02
,  …, 𝑌𝑖𝑛 =  

𝑋𝑖𝑛

𝑋0𝑛
 

for the i-th person.  Each ratio is positive. Value of a ratio may be 

<  or ≥ 1.  Since, all the variables have been converted to be 

positively related to cancer, 𝑌𝑖𝑗 > 1 ⟹ the i-th person exceeded 

the standard value of the j-th variable and run the risk of cancer 

w.r.t. the j-th variable. If  𝑌𝑖𝑗 > 1 for more than one value of j, it 

would imply the person’s risk of cancer with respect to more than 

one variable. If 𝑌𝑖𝑗  is close to1 from left for the 𝑗 −

th variable, the i-th person may not be diagnosed as cancer 

patient but may be taken as a potential cancer patient with respect 

to the j-th variable. 

However, quantification of intensity of cancer of the i-th person 

could be assessed by finding similarities or deviations between 

the values of the vector 𝑿𝒊and 𝑿𝟎  by the geometric mean of the 

unit free values of 𝑌𝑖1, 𝑌𝑖2,  𝑌𝑖3, … , 𝑌𝑖𝑛   for the i-th person. 

Thus, cancer intensity (CIi) of the i-th person is  

𝐶𝐼𝑖 =  √∏ 𝑌𝑖𝑗
𝑛
𝑗=1

𝑛
    

    

 (1) 

Alternatively, avoiding the n-th root, 𝐶𝐼𝑖  can be taken as  CIi 

=∏ 𝑌𝑖𝑗
𝑛
𝑗=1    (2) 

Equation (2) is preferred for little lesser computations. 

If value of 𝐶𝐼𝑖 > 1, the person can be diagnosed as cancer 

patient and the 𝑌𝑖𝑗
′ 𝑠  exceeding one are the bad prognostic 

factors for the i-th person requiring attention to decide 

individual patient care and choice of treatment. Bad prognosis 

factors for a patient may differ depending on types of disease 

and his/her disease intensity. 

The proposed index  𝐶𝐼𝑖 reflects disease-status considering all the 

chosen factors or cancer intensity of the i-th person and thus, 

facilitates ranking a group of patients in terms of cancer intensity. 

Contribution of the j-th factor to disease intensity of the i-th 

patient is given by   
𝑌𝑖𝑗

𝐶𝐼𝑖
.   𝐶𝐼𝑖 can be multiplied by 100 to give 

percentage figures. The simple, unit free, continuous measure 

with monotonic property satisfies all the scientific aggregation 

rules, given by Ebert and Welsch, (2004) and has the following 

properties:  

i) Consider all chosen variables and depicts 

disease/cancer intensity of the i-th person with respect to 

the standards. 

ii) Not affected by change of scale 

iii) Assess relative importance of the factors to disease 

intensity of a patient.  

iv) Can be applied also for skewed data, even when 

the chosen variables are correlated amongst 

themselves or with the disease intensity 

(confounding effect). 

v) Presence of extreme values (outliers) cannot affect the 

measure much and thus no bias for measuring disease 

intensity of a patient. 

vi) Low value of one key variable does not get 

compensated by high values in another key variable. 

vii) Facilitates formation of chain indices, that is 𝐶𝐼20 =

 𝐶𝐼21. 𝐶𝐼10  where “0” denotes the first time period (or 

base period), i-th patient was diagnosed; 1 and 2 denote  

the subsequent time- periods when CI were measured for 

the patient.  

viii)  Possible to obtain graph of 𝐶𝐼𝑖  over a period to 

reflect path of improvement and relapses experienced by 

the patient over time.   

3.1 Advantages:    

3.1.1 Estimation and testing: Sample GM can be computed 

using l𝑜𝑔𝐺𝑀= 
1

𝑛
∑ 𝑙𝑜𝑔𝑌𝑖𝑗 .  Population estimate of 𝐺𝑀 can be 

taken as the sample 𝐺𝑀 for large or moderately large data 

involving sample size of N. Alf and Grossberg (1979) have given 

estimate of standard error of  the 𝐺𝑀 and confidence interval of 

𝐺𝑀 . Testing of null hypotheses 𝐻0: 𝐺𝑀1 = 𝐺𝑀2  can be 

performed by conventional 𝑡 − tests on the logarithms of the 

observations. 

3.1.2 Classification: 𝐶𝐼𝑖’s can be used for undertaking Cluster 

analysis and classification of cancer patients with respect to 

cancer intensity, separately for each cancer type.  

However, class membership of a patient may get changed 

subsequently with changed value of 𝐶𝐼𝑖  due to cares and 
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treatments. Such analysis with large data emerging from 

representative samples under each cancer type may help to find 

norms (class boundaries) for the classes. 

3.1.3 Assessment of progress: Let 𝐶𝐼𝑖1
 be the cancer intensity of 

the i-th person at time-point 1, i.e. the first time when the patient 

was examined and treatment started. So, 

                                     𝐶𝐼𝑖1
=  ∏ 𝑌𝑖𝑗1

𝑛
𝑗=1  =  ∏

𝑋𝑖𝑗1

𝑋𝑜𝑗

𝑛
𝑗=1                 

    (3) 

𝐶𝐼𝑖1
 is the baseline status of disease-characteristics of the i-th 

patient. Subsequently, cancer intensity of the same patient are 

assessed at different time periods 𝐶𝐼𝑖𝑡
 for t= 1, 2, 3, … , and so 

on. With passage of time, 𝐶𝐼𝑖𝑡
  may show zigzag pattern as many 

patients with Multiple Myeloma (MM) respond to initial therapy 

but recorded relapse (Sonneveld et al. 2017). 

𝐶𝐼𝑖𝑡
<𝐶𝐼𝑖(𝑡−1)

indicates improvement of the patient during the t-th 

time from the (t-1)-th time. Similarly, 𝐶𝐼𝑖𝑡
> 𝐶𝐼𝑖(𝑡−1)

, imply 

deterioration of patient during the same period. Thus, negative 

value of [𝐶𝐼𝑖𝑡
- 𝐶𝐼𝑖(𝑡−1)

] will reflect reduction in disease intensity 

or progress of the i-th patient at t-th time from the (t-1)-th time. 

The same may also be used to find short-term effect of surgery or 

BMT or a clinical trial. The critical variables where deterioration 

took place can be observed by comparing the values of  𝑌𝑖𝑗  for the 

period t and (t-1), that is those component variables for which 𝑌𝑖𝑗𝑡
 

exceeds 𝑌𝑖𝑗(𝑡−1)
. Extent of deterioration in the identified variables 

can be assessed by difference of values of corresponding 𝑋𝑖𝑗
′ 𝑠 .  

Alternatively, progress of a patient during t-th time point over (t-

1)-th period can be reflected by the ratio  
𝐶𝐼𝑖𝑡

𝐶𝐼𝑖(𝑡−1)

. Value of the ratio 

exceeding unity will indicate improvement in the t-th period from 

(t-1)-th time point. Note that the ratio  

𝐶𝐼𝑖𝑡

𝐶𝐼𝑖(𝑡−1)

=  
∏ 𝑌𝑖𝑗𝑡

𝑛
𝑗=1

∏ 𝑌𝑖𝑗(𝑡−1)
𝑛
𝑗=1

 = 
∏

𝑋𝑖𝑗𝑡
𝑋𝑜𝑗

𝑛
𝑗=1

∏
𝑋𝑖𝑗(𝑡−1)

𝑋𝑜𝑗

𝑛
𝑗=1

                              

     (4) 

The equation (4) helps to find progress of a patient from the 

beginning (i.e. time zero) since the measure 𝐶𝐼𝑖𝑡
 facilitates 

formation of chain indices. 

A decreasing graph of 𝐶𝐼𝑖𝑡
 and t implies that the i-th patient is 

improving over time and an increasing graph of 𝐶𝐼𝑖𝑡
 and t will 

indicate the reverse. Attempt can be made to find a small interval 

of values of  𝐶𝐼𝑖𝑡
 for each cancer type which may be associated 

with Stage IV cancer or metastatic cancer. 

3.1.4 Hazard function: The graph of 𝐶𝐼𝑡  emerging from (4) is 

more akin to hazard function 𝜆(𝑡) since  
𝑋𝑖𝑗𝑡

𝑋𝑜𝑗
 quantifies extent of 

j-th hazard for the i-th patient at t-th time. For a sample of size N, 

there are N points using l𝑜𝑔𝐺𝑀𝑖= 
1

𝑛
∑ 𝑙𝑜𝑔

𝑋𝑖𝑗

𝑋0𝑗

𝑛
𝑗=1    i=1, 2, ……, N.  

Further observations of patients in subsequent periods, will 

generate additional points. The frame allows fitting of multiple 

linear regression of the form log 𝐺𝑀 =  𝛼 + ∑ 𝛽𝑖𝑙𝑜𝑔𝑋𝑖 + 𝜖  

which is an alternative approach to estimate hazard function of 

patients without any assumption. For completeness of follow-up 

data, one may ignore the patients who discontinued or died early. 

However, this needs to be compared with Cox hazard function 

empirically.  

 

4. DISCUSSION 

Non-parametric Kaplan-Meier survival curve is popular but has 

several limitations and cannot assess the relationship of survival 

with the explanatory variables.  

Existing semi-parametric and parametric models dealing with 

group data have advantages and limitations too. Assumptions of 

the models need to be verified. Major question to address is ‘what 

to do if one or more assumptions are not satisfied’.  

Methods of survival analysis, inter alia assumes homogeneity 

of treatment and related factors during the follow-up period 

(Clark et al. 2003). However, in practice, such assumptions 

do not hold. 

The proposed method (Geometric mean approach) is non-

parametric, simple and satisfies desired properties from 

measurement theory angle. Strictly speaking, this is not 

model driven.  Focusing on individual patient, it  helps in 

mathematical diagnosis of disease like cancer of a particular 

type, disease intensity in terms of function of geometric mean 

of the chosen measurable factors/variables, identification of 

bad prognosis factors of an individual and quantification of 

progress or deterioration of a patient over time (analogous to 

hazard function of an individual). The method can help the 

researchers and practitioners to make meaningful analysis 

and drawing meaningful conclusions including estimation of 

hazard function of sample patients without making any 

assumption.  

However, empirical verifications of the proposed method, its 

robustness and estimation of hazard function and clinical 

validations are proposed as future studies. 
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