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INTRODUCTION 

Type 2 diabetes mellitus (T2DM) is a chronic, non-infectious 

disease [1]. T2DM can cause a variety of illnesses, including 

cardiovascular disease [2], stroke [3], visual impairment [4], as 

well as renal capacity loss [5]. Diabetes is becoming more 

prevalent. Diabetes affected 285 million people worldwide in 

2010, compared to 422 million in 2014 [6] This figure is 

expected to rise to 438 million by 2030 [7] and 592 million out 

of 2035 [8]. Diabetes is more prevalent in low- and moderate-

income countries than in high-income countries [7], It also 

accounts for a significant portion of the mortality and 

incapacity rates in such networks [6]. One reason for the high 

prevalence of diabetes in low-income countries could be a 

lack of diabetes knowledge and awareness [9]

.
 

Diabetes mellitus prediction is extremely important in all 

networks. The first step in avoiding T2DM is to recognize its 

risk factors. A review of the literature revealed that  

variables such as age [10,11], sex [10,12], family background of 

diabetes [11, 13], hypertension [14], stoutness [10,15], stomach 

weight [16], stress in the working environment or home [17,18], 

a stationary way of life [19,20], smoking [21], inadequate leafy 

foods utilization [22], and active work [23,24] are hazard factors 

related with T2DM. 

The Diabetes Pedigree Function, pedi, was one of the study's 

most intriguing features. It detailed diabetes mellitus in 

relatives as well as the genetic link between those relatives 

and the patient. This genetic influence measurement provides 

insight into the hereditary risk of diabetes mellitus. Based on 

the findings in the preceding section, it is unclear how well 

this function predicts the onset of diabetes [25]. 

 

STUDY OBJECTIVES 

The primary goals of this study were to identify diabetes risk 

factors and determine their relative contribution using 

artificial intelligence as a mode of prediction. 

 

METHODS 

The current investigation was led by breaking down the 

dataset, as shown below. We chose a dataset from Kaggle. 

The diabetes dataset was from India. It has 763 female 

members, 497 of whom have no diabetes and 266 who have 

type 2 diabetes. We used neural network analysis to create 

 
ABSTRACT  

 

 
ARTICLE DETAILS  

 
To identify risk factors, neural network analysis is used to create disease prediction models, 

including diabetes. The goals of this study were to identify diabetes risk factors and determine their 

relative contribution using artificial intelligence as a mode of prediction. The current investigation 

was led by breaking down the dataset, as shown below. We chose a dataset from Kaggle. The 

diabetes dataset was from India. It has 763 female members, 497 of whom have no diabetes and 

266 who have type 2 diabetes. We used neural network analysis to create mathematical models and 

visualize the distribution of diabetic risk factors. The significance level was set at 0.05. The current 

study found that the following risk factors were ranked in order of importance: Diabetes Pedigree 

Function, age, glucose, skin thickness, blood pressure, BMI, insulin, and number of pregnancies. 

When combined, neural network analysis is effective in developing mathematical models that can 

predict disease risk factors. 

 

KEYWORDS: neural network analysis, artificial analysis, diabetes, risk factors, Kaggle. 

 

Published On:  

23 November 2022 

 

 

 

 

 

 

 

 

 

Available on:  

https://ijpbms.com/ 

 

https://doi.org/10.47191/ijpbms/v2-i11-13
https://ijpbms.com/


Evaluating the Risk of Type 2 Diabetes Mellitus Using Artificial Neural Network 

547  Volume 02 Issue 11 November                             Corresponding Author: Abdulaziz Fhad Abdulaziz alsalem 

mathematical models and visualize the distribution of 

diabetic risk factors. The significance level was set at 0.05. 

The dataset focused on a few risk factors, one of which is 

insulin. Neural network analysis predicts risk factors, 

autonomous factors, or covariates on the outcome, diabetes. 

This cycle had three layers: the input layer (covariates), the 

stowed away layers, and the yield layer (subordinate 

variable). This cycle differs from traditional measurements in 

that it provides expectations that can have an impact on the 

reliant factors. 

 

RESULTS 

A case processing summary, as shown in table (1), was 

provided. A total of 540 cases (89.3%) were included in 

training, while 65 (10.7%) were included in testing. The 

number of valid cases was 605 (100%). 

 

Table 1. Case Processing Summary 

 N Percent 

Sample Training 540 89.3% 

Testing 65 10.7% 

Valid 605 100.0% 

Excluded 163  

Total 768  

   

NETWORK INFORMATION 

The model had three layers, as shown in table (2). The first 

(input layer) contained eight risk factors: the number of 

pregnancies, glucose, blood pressure, skin thickness, insulin, 

BMI, diabetes pedigree function, and age. The second 

layer(s) represented hidden layers as follows: number of 

hidden layers (1), number of units in hidden layer (10), and 

hyperbolic tangent as the activation function. The output 

layer had one dependent variable (the outcome, diabetes), two 

units, a soft max activation function, and an error function 

expressed as a cross-entropy. 

 

Table 2. Network Information 

Input Layer Factors 1 Pregnancies 

2 Glucose 

3 Blood Pressure 

4 Skin thickness 

5 Insulin 

6 BMI 

7 Diabetes Pedigree Function 

8 Age 

Number of Unitsa 1069 

Hidden Layer(s) Number of Hidden Layers 1 

Number of Units in Hidden Layer 1a 10 

Activation Function Hyperbolic tangent 

Output Layer Dependent Variables 1 outcome 

Number of Units 2 

Activation Function Softmax 

Error Function Cross-entropy 

a. Excluding the bias unit 

 

MODEL SUMMARY 

A model summary was provided, as shown in table (3). In the 

training section, approximately 31% of diabetes predictions 

were incorrect. The percentage of incorrect predictions in the 

testing section was 29.2%. 

 

Table 3. Model Summary 

Training Cross Entropy Error 316.633 

Percent Incorrect Predictions 31.3% 

Stopping Rule Used 1 consecutive step(s) with no decrease in errora 
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Training Time 0:00:16.59 

Testing Cross Entropy Error 30.760 

Percent Incorrect Predictions 29.2% 

Dependent Variable: outcome 

a. Error computations are based on the testing sample. 

 

CLASSIFICATION 

As shown in table (4), the overall percent for diabetes 

prediction in the training part was 68.7%, while the overall 

percent for diabetes prediction in the testing part was 70.85. 

 

Table 4. Classification 

Sample Observed Predicted 

.00 1.00 Percent Correct 

Training .00 325 24 93.1% 

1.00 145 46 24.1% 

Overall Percent 87.0% 13.0% 68.7% 

Testing .00 43 4 91.5% 

1.00 15 3 16.7% 

Overall Percent 89.2% 10.8% 70.8% 

Dependent Variable: outcome 

 

INDEPENDENT VARIABLE IMPORTANCE  

Diabetes Pedigree Function (100%), age (92.6%), glucose 

(89.6%), skin thickness (87.7%), blood pressure (84.4%), 

BMI (83.3%), insulin (82.7%), and number of pregnancies 

(81.7%) were the most important risk factors, as shown in 

table (5) and figure (1). 

 

Table 5. Independent Variable Importance

 Importance Normalized Importance 

Diabetes Pedigree Function .142 100.0% 

Age .132 92.6% 

Glucose .128 89.6% 

Skin thickness .125 87.7% 

Blood Pressure .120 84.4% 

BMI .119 83.3% 

Insulin .118 82.7% 

No of Pregnancies .116 81.7% 

 

 
Figure 1. The importance of risk factors for diabetes 
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DISCUSSION 

According to the findings of this study, the Diabetes Pedigree 

Function is the most important risk factor for developing 

diabetes. This implies that genetic predisposition has a 

significant impact on the occurrence of diabetes. This was 

also reported in other studies in which the Diabetes Pedigree 

Function was identified as one of the primary causes of 

diabetes [26]. Age has been identified as the second most 

important risk factor for diabetes. This is also consistent with 

previous research [26]. Diabetes is more likely to develop as 

one gets older [26,27]. 

According to the findings of this study, the third most 

important risk factor for diabetes is blood glucose levels. 

Diabetes is defined and measured by glucose levels. Other 

datasets have identified glucose levels as an important risk 

factor for diabetes [26-29]

.
 

In terms of the significance of diabetic risk, skin thickness 

followed glucose levels. Skin thickness (the contact between 

the epidermis and the dermis), which is primarily determined 

by collagen content, is more pronounced in diabetic patients 

who have been diabetic for more than ten years [30]. This 

could be as a result of increased collagen cross-linking and 

decreased collage turnover [31, 32]. Jain., et al. [33] undertook a 

study to assess skin and subcutaneous tissue thickness in type 

2 diabetic patients, in the hope that this information will come 

in handy during the insulin infusion procedure. Their findings 

revealed that in people with a BMI of less than 23 kg/m2, 

males had thicker skin at the arm and thigh than females (P 

0.05). Males with a body mass index (BMI) of 19 to 23 kg/m2 

had thicker skin around the middle [34]. According to the 

findings, blood pressure predicted the occurrence of diabetes. 

This finding supported previous research that blood pressure 

may be a risk factor for diabetes [26, 35]. Although T2D may 

cause hypertension, the link between T2D and hypertension 

is unlikely to be causal. These findings emphasize the 

importance of maintaining a healthy glycemic profile in the 

general population, as well as BP screening and monitoring 

in T2D patients, particularly systolic BP [36]. 

According to the findings of this study, BMI is an important 

risk factor for diabetes. It was recently reported that pre-

diagnosis BMI was related to microvascular problems in 

patients with incident type 2 diabetes, but weight loss was 

associated with a lower risk when compared to stable weight. 

The connections to macrovascular disease were less clear [37]. 

Insulin levels have been shown to be an important predictor 

of diabetes. We previously demonstrated that the level of 

insulin rises as diabetes progresses [38, 39]

.
 

According to the findings of this study, the number of 

pregnancies is the least important predictor of diabetes risk. 

Pregnancy has been linked to gestational diabetes, according 

to reports [40]. 

 

CONCLUSIONS 

Using neural network analysis, the current study found that 

several important risk factors for diabetes were linked. 

Diabetes Pedigree Function, age, glucose, skin thickness, 

blood pressure, BMI, insulin, and number of pregnancies 

were ranked in the order of their relative importance. 
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